
Software Configuration Management
Patterns: Effective Teamwork, Practical
Integration

By Steve Berczuk
with Brad Appleton

Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
(Cover1.fm 6/14/02) 1

2 (Cover1.fm) (1)

Software Configuration Management Patterns:

Effective Teamwork, Practical Integration

By Steve Berczuk

with Brad Appleton
(SBTitle.fm 6/14/02) 1

2 (SBTitle.fm) ()

Copyright 2002 by Addison Wesley ...

All rights reserved.

ISBN 0-000-000000-0

ABCDEFGHIJ-DO-89
(SBFrontMatter.fm 6/14/02) i

ii (SBFrontMatter.fm) ()

Dedication
(SBDedication.fm 6/14/02) 1

2 (SBDedication.fm) ()

Table of Contents

Table of Contents iii
Preface ix

Why I wrote this book x
Who should read this book xi
How to read this book. xi
Origins of this Material xii
About the Photos xii

Contributor’s Preface xiii
Why I co-wrote this book with Steve xiii

Acknowledgements xv

 1
Introduction 1

Key Concepts and Terminology 1
Codeline and Branching Diagrams 6
Further Reading 7

 11
Putting a System Together 11

Balancing Stability and Progress 12
The Role of SCM in Agile Software Development 14
SCM in Context 15
SCM as a Team Support Discipline 18
What Software Configuration Management Is 19
The Role of Tools 22
The Larger Whole 22
This Book’s Approach 22
Table of Contents (SBTOC.fm 6/14/02) iii

Unresolved Issues 23
Further Reading 23

 25
The Software Environment 25

General Principles 25
What Software is About 27
The Development Workspace 30
Architecture 30
The Organization 33
The Big Picture 35
Further Reading 36

 37
Patterns 37

About Patterns and Pattern Languages 38
Patterns in Software 39
Configuration Management Patterns 40
Structure of Patterns in this Book 42
The Pattern Language 42
Overview of the Language 44
Unresolved Issues 50
Further Reading 50
 51

 55
Mainline 55

Simplify your Branching Model 59
Unresolved Issues 61
Further Reading 62

 63
Active Development Line 63

Define your goals 66
Unresolved Issues 69
Further Reading 69

 71
iv (SBTOC.fm) Table of Contents ()

Private Workspace 71
Isolate Your Work to Control Change 76
Unresolved Issues. 80
Further Reading 81

 83
Repository 83

One Stop Shopping 86
Unresolved Issues 89
Further Reading 89

 91
Private System Build 91

Think Globally by Building Locally 94
Unresolved Issues 98
Further Reading 98

 101
Integration Build 101

Do a Centralized Build 104
Unresolved Issues 106
Further Reading 106

 107
Third Party Codeline 107

Use the tools you already have 110
Unresolved Issues 113
Further Reading 113

 115
Task Level Commit 115

Do One Commit per small-grained task 117
Unresolved Issues 118

 119
Codeline Policy 119

Define the Rules of the Road 122
Table of Contents (SBTOC.fm 6/14/02) v

Unresolved Issues 123
Further Reading 123

 125
Smoke Test 125

Verify Basic Functionality 126
Unresolved Issues 128
Further Reading 128

 129
Unit Test 129

Test The Contract 131
Unresolved Issues 132
Further Reading 132

 133
Regression Test 133

Test for Changes 135
Further Reading 136

 137
Private Versions 137

A Private History 140

 143
Release Line 143

Further Reading 147

 149
Release-Prep Code Line 149

Branch instead of Freeze 151
Unresolved Issues 152

 153
Task Branch 153

Handling Long Lived Tasks 153
Use Branches for Isolation 156
Table of Contents (SBTOC.fm 6/14/02) vi

 159
Referenced Patterns 159

 Named Stable Bases 159
Daily Build and Smoke Test 159

 161
Bibliography 161

 161

 167
SCM Resources On-line 167

 171
Tool Support for SCM Patterns 171

VSS - Visual Source Safe 173
CVS - The Concurrent Version System 175
Perforce 177
BitKeeper 179
AccuRev 181
ClearCase - base functionality (non-UCM) 183
ClearCase - Unified Change Management (UCM) 185
CM Synergy 186
StarTeam 187
PVCS Dimensions 189
PVCS Version Manager 190
MKS Integrity (Enterprise edition) 191
Further Reading 192

 1
Photo Credits 1

 1
About the Photos 1
List of Figures 1
Table of Contents (SBTOC.fm 6/14/02) vii

viii (SBTOC.fm) Table of Contents ()

Preface

Configuration management is not what I do. I am not a configuration management
person. I am not an organizational-anthropology person. However, I discovered
early on that understanding organizations, software architecture, and configuration
management were essential to doing my job as a software developer. I also find this
systems perspective on software engineering interesting. I build software systems,
and configuration management is a very important, and often neglected, part of
building software systems. In this book I hope that I can show you how to avoid
some of the problems that I have encountered so that you can build systems more
effectively with your team.

I should probably explain what I mean in making the distinction between SCM peo-
ple and people who build software systems. The stereotype is that configuration
management people are concerned with tools and control. They are conservative, and
they prefer slow predictable progress. They are also “the few” as compared with” the
many” developers in an organization. Software engineers (so the stereotype goes) are
reckless. They want to build things fast, and they are confident that they can code
their way out of any situation. These are extreme stereotypes, and in my experience,
the good software engineers and the good release/quality assurance/configuration
management people have a common goal: they are focused on delivering quality sys-
tems with the least amount of wasted effort.

Good configuration management practice is the not the silver bullet to building sys-
tems on time, just as patterns, extreme programming, the Unified Process, or any-
thing else that you might hear about. It is however, a part of the toolkit that most
people ignore because they fear “process,” often because of bad experiences in the
past. (Weigers 2002)

This book describes some common software configuration management practices.
The book will be particularly interesting to software developers working in small
teams who suspect that they are not using software configuration management as
Preface (SBPreface.fm 6/14/02) ix

effectively as they can. The techniques that we describe are not tool specific. Like any
set of patterns or best practices, the ease with which you can apply the patterns may
depend on whether or not your tool provides explicit support for it.

Why I wrote this book

I started my software development career with a small R&D group that was based in
the Boston area. Aside from the many interesting technical problems we had encoun-
tered as part of our jobs, we had the added twist of having joint development projects
with a group in our parent company’s home base in Rochester, New York. This expe-
rience helped me recognize early in my career that software development wasn’t just
about good design and good coding practices, but also about coordination among
people in the same group, and even teams in different cities. Our group took the lead
in setting up the mechanics of how we would share code and other artifacts of the
development process. We did the usual things to make working together easier such
as meetings, teleconferences and e-mail lists. The way that we set up our (and the
remote team’s) software configuration management system to share code played a
very large part in making our collaboration easier.

The people who set up the SCM process for out Boston group used techniques that
seemed to have been tried throughout their careers. As I move on to other organiza-
tions, I was amazed to find how may places were struggling with the same common
problems — problems that I knew had good solutions. This was particularly true
because I have been with a number of startups that were only one or two years old
when I joined. One to two years is often the stage in a startup where you are hiring
enough people that coordination and shared vision are difficult goals to attain.

A few years into my career, I discovered patterns. Eric Gamma, Richard Helm, Ralph
Johnson, and John Vlissides were just finishing the book Design Patterns (Gamma et
al. 1995), and the Hillside group was organizing the first Pattern Languages of Pro-
gram (PLoP) conference. There is a lot of power in the idea of patterns since they are
about using the right solution at the right time, and also because patterns are interdis-
ciplinary; they are not just about domain or language specific coding techniques, but
about how to build software from all perspectives, from the code to the team. I work-
shopped a number of papers at the various PLoP conferences that dealt with patterns
at the intersection of design, coding, and configuration management (Steve Berczuk
1996b; Stephen P Berczuk 1996a, 1995; Appleton et al. 1998; Cabrera et al. 1999; Steve
Berczuk and Appleton 2000).
x (SBPreface.fm) Preface ()

At one Pattern Languages of Programming (PLoP) conference I met Brad Appleton,
who is more of an SCM person than I am. We co-authored a paper about branching
patterns (Appleton et al. 1998),just one aspect of SCM. After much encouragement
from our peers, I started working on this book.

I hope that this book helps you avoid some common mistakes, either by making you
aware of these approaches, or by providing you with documentation you can use to
explain methods that you already know about to others in your organization.

Who should read this book

I hope that anyone who builds software and uses a configuration management sys-
tem can learn from this book. The details of the configuration management problem
change depending on the types of systems that you are building, the size of the
teams, and the environment that you work in. Since it’s probably impossible to write
a book that will address everyone’s needs and also keep everyone’s interest, I had to
limit what I was talking about. This book will be most valuable to someone who is
building software, or managing a software project, in a small to medium size organi-
zation where there is not a lot of defined process. If you are in small company, a star-
tup, or in a small project team in a larger organization, you will benefit most from the
lessons in this book. Having said that, even if your organization has a very well
defined, heavy, process, that seems to be impeding progress, you’ll be able to use the
patterns in this book to better focus on the key tasks of SCM.

How to read this book.

The introduction explains some basic concepts for software configuration manage-
ment (SCM) and also the notation that the diagrams use. Chapter 1 introduces the
software configuration management concepts that I use in this book. Chapter 2 talks
about some of the forces that influence decisions that you make about what sort of
SCM environment that you have. Chapter 3 introduces the concept of patterns and
the patterns in this book and how they relate to each other. The rest of the book con-
sists of patterns that illustrate problems and solutions to common SCM problems.

Chapters 1 and 2 define the general problems that this book addresses. To under-
stand the how the patterns fit together, you should read chapter 3 to get an overview
of the language. After you have read the first 3 chapters, you can browse the patterns
Preface (SBPreface.fm 6/14/02) xi

in the rest of the book, starting with an interesting one, and following the ones that
relate to your problem. Another approach is to read the patterns in order and form a
mental picture of the connections between them.

The references to the other patterns in the book appear in the introductory paragraph
for each section, and in the “Unresolved Issues” section at the end of each chapter,
using a presentation like this: ACTIVE DEVELOPMENT LINE (5). The number in paranthe-
ses is the chapter number that contains the patterns.

Since this is a large field to cover, some of the context and unresolved issues sections
don’t refer to other patterns, either in the book, or elsewhere, since they haven’t been
documented. In this case you will see a description about what a pattern might cover.

Origins of this Material

Much of the material in this book has its origins in papers that were written for vari-
ous Pattern Languages of Programs conferences by myself, Brad Appleton, Ralph
Cabrera, and Robert Orenstein. The patterns here have been greatly revised from the
original material, but it’s appropriate to mention these papers here to acknowledge
the roles of others to this work: “Streamed Lines: Branching Patterns for Parallel
Software Development” (Appleton et al. 1998) , “Software Reconstruction: Patterns
for Reproducing the Build” (Cabrera et al. 1999), “Configuration Management Pat-
terns” (Steve Berczuk 1996b).

About the Photos

The photos that start each chapter are from the the Library Of Congress. All of the
photos are from the first half of the twentieth cetntury. With the exception of one
photo (the photo for ACTIVE DEVELOPMENT LINE (5)), they are from the collection: Depres-
sion Era to World War II ~ FSA/OWI ~ Photographs ~ 1935-1945: America from the Great
Depression to World War II: Photographs from the FSA and OWI, ca. 1935-1945. I chose
these pictures because I wanted to provide a visual metaphor for the patterns. Soft-
ware is an abstract concept, but many of the problems that we solve, particularly the
ones about teams, are similar to real world problems. I also have always had an inter-
est in photography and history.

-Steve Berczuk, Arlington Massachusetts, June, 2002.
xii (SBPreface.fm) Preface ()

Contributor’s Preface

Why I co-wrote this book with Steve

I began my software development career in 1987 as a part-time software tools devel-
oper to pay for my last year of college. Somehow it “stuck” because I’ve been doing
some form of tool development ever since (particularly SCM tools), even when it
wasn’t my primary job. I even worked (briefly) for a commercial SCM tool vendor,
and part of my job was to stay “current” on the competition. So I amassed as much
knowledge as I could about other SCM tools on the market. Even after I changed jobs,
I continued my SCM pursuits, and frequented various tool user groups on the Inter-
net.

At one time, I longed to advance the “state of the art” in SCM environments, and kept
up with all the latest research. I soon became frustrated with the vast gap between the
“state of the art” and the “state of the practice.” I concluded I could do more good by
helping advance the state of the practice to better utilize available tools. Not long
after that, I discovered software patterns and the patterns community. It was clear
these guys were “onto” something important in their combination of analysis and
storytelling for disseminating recurring best practices of software design.

At the time, there weren’t many people in the design patterns community that were
trying to write-up SCM patterns. SCM is, after all, the “plumbing of software devel-
opment” to a lot of programmers: everyone acknowledge that they need it, but no
one wants to have to dive into it too deeply and get their hands entrenched in it. They
just want it to work, and to not have to bother with it all that much.
Contributor’s Preface (SBPreface2.fm 6/14/02) xiii

It didn’t take long for me to “hook up” with Steve Berczuk. We wrote several SCM
patterns papers together (with Ralph Cabrera) as part of my ACME project at
acme.bradapp.net, and later decided to work on this book. We hope this small but
cohesive set of core patterns about integration and teamwork helps the unsuspecting
developer-cum-project-lead to survive and thrive in successfully leading and coordi-
nating their team’s collaborative efforts and integrating the results into working soft-
ware.

Thank you to my wife Maria for her unending love and support (and our daughter
Kaeley), and to my parents for their encouragement. Thanks also to my former man-
ager Arbela for her encouragement, support and friendship.

-- Brad Appleton
xiv (SBPreface2.fm) Contributor’s Preface ()

Acknowledgements

My Editor, Debbie Lafferty for her patience, negotiation skill, and enthusiasm. The
production staff, ...(names?)

Everyone who provided feedback on the manuscript, including Hisham Alzanoon,
Bruce Angstadt, Stanley Barton, David Bellagio, Phil Brooks, Kyle Brown, Frank
Buschmann, Thomas Dave, Bernard Farrell, Linda Fernandez, Jeff Fischer, William
Hasling, Kirk Knoernschild, Dmitri Lapyguine, McDonald Michael, James Noble,
Damon Poole, Linda Rising, Alan Shalloway, Eric Shaver, Michael Sheetz, Dave
Spring, Marianne Tromp, Ross Wetmore, Farrero XavierVerges.

And lastly, I must mention Gillian Kahn, my partner in all things, whose feedback,
insight, and especially patience as I finished this project were invaluable to me.
Acknowledgements (SBAcknowledgements.fm 6/14/02) xv

xvi (SBAcknowledgements.fm) Acknowledgements ()

Chapter 0
Introduction

This chapter describes some of the basic concepts, notation, and terminology that we
use in this book. The vocabulary of software configuration management is used in
various ways in different contexts, and the definitions here are not a comprehensive
survey of way that these terms are used. Where we can we have tried to use terminol-
ogy that is commonly used. This section also provides a basic introduction to the
practices of version control, and some suggestions for further reading.

Key Concepts and Terminology

Software configuration management (SCM) comprises factors such as configuration
identification, configuration control, status accounting, review, build management,
process management, and team work (Dart 1992). SCM practices taken as a whole
define how an organization builds and releases products, and identifies and tracks
changes. This book concerns itself with the aspects of SCM that have a direct impact
on the day-to-day work of the people writing code, and implementing features and
changes to that code.

Some of the concepts that developers deal with implicitly, if not by name, are work-
spaces, codelines, and integration.

A workspace is a place where a developer keeps all of the artifacts that they need to
accomplish a task. In concrete terms, a workspace can be a directory tree on disk in
the developer’s working area, or it can be a collection of files maintained in an
abstract space by a tool. A workspace is normally associated with particular versions
of these artifacts. A workspace also should have a mechanism for constructing exe-
Introduction (SBCHOO-Intro.fm 6/14/02) 1

cutable artifacts from the its contents. For example, if you are developing in Java,
your workspace would include:

• Source code (.java files) arranged in the appropriate package structure
• Source code for tests
• Java library files (.jar files)
• Library files for native interfaces, that you do not build (for example, dll

files on windows)
• Scripts that define how you build java files into an executable

Sometimes a workspace is managed in the context of an integrated development
environment (IDE). A workspace is also associated with one or more codelines.

A codeline is the set of source files and other artifacts that comprise some software
component as they change over time. Every time that you change a file or other arti-
fact in the version control system, you create a revision of that artifact. A codeline con-
tains every version of every artifact along one evolutionary path.

At any point in time, a snapshot of the codeline will contain various revisions of each
component in the codeline. Figure 0-1 illustrates this; at one point you have version 1
of both file1.java and File2.java. The next time there is a change to the codeline, the
next version of the codeline comprises revision 1 of File1.java and revision 2 of
File2.java. Any snapshot of the codeline that contains a collection of certain revisions
of every component in the codeline is a version of the codeline1. If you choose to iden-
tify or mark a version as special, you define a label. You might label the set of revi-
sions that went into a release, for example.

In the simplest case, you might just have one codeline that includes all of your prod-
uct code. Components of a codeline evolve at their own rate, and have revisions that
we can identify. You can identify a version of the codeline by a label. The version of

1. In general, you can also “tag” different revisions of components to identify a version of the codeline. For exam-
ple, Version 1 of File2.java and version 3 of File1.java, but there are other, more intuitive ways, of identifying c
configuration like this.
2 (SBCHOO-Intro.fm) Introduction (0)

the codeline is a snapshot that includes the revisions of the components up to the
point of the label.

You can have more than one codeline contribute to a product if each codeline consists
of a coherent set of work. Each codeline can have a different purpose, and you can
populate your workspace from an identifiable configuration of snapshots from vari-
ous codelines. For example, you can have third-party code in one codeline, active
development in another, and internal tools that are treated as internal products in a
third. Figure 0-2 illustrates this. Each codeline will also have a policy associated with

Figure 0-1 .A Code Line and its Components

file1.java

1 2 3

1 2

file2.java

1.0 2.0
Introduction (SBCHOO-Intro.fm 6/14/02) 3

it. These policies define the purpose of the codeline, and rules for when and how you
can make changes.

As codelines evolve, you may discover that some work is derivative from the inten-
tion of the codeline. In this case, you may want to branch the file so that it can evolve
independently of the original development. A branch of a file is revision of the file
that starts with the trunk version as a starting point, and evolves independently. Fig-
ure 0-3 illustrates this. After the second revision someone creates a branch and
changes the file through revisions 2.1, 2.2, etc. A common notation is to indicate a
branch by adding a minor version number (after a “.”) to indicate that the branched
revision is based on the major revision on the trunk. An example of a reason to create
a branch would be that you want to start work on a new release of a product, yet still
be able to fix problems with the released version. In this case you can create a branch
to represent the released version, and do your ongoing work on the trunk. In this
case, some of the changed you make on the branch may need to also make their way

Figure 0-2 .Populating a Workspace from different Code Lines

Stable
Build

Release
1

Release
2

/Maindev

ToolsDev

ToolsDev

Workspace
4 (SBCHOO-Intro.fm) Introduction (0)

to the trunk, and you do by doing a merge to integrate the changes from the branch to
the trunk. Figure 0-3 shows this with the dotted line from revision 2.2 to revision 3.

 Merging can be automated to some degree by tools that identify contextual text dif-
ferences, but you often need to understand the intention of the change to merge cor-
rectly.

Often you will want to branch not just a single file, but an associated set of files in an
entire codeline. In this case, the versions refer to versions of the entire codeline taken
as a unit, where a version of the codeline includes all of the revisions of the codeline
at the point in time.

Every time you change any component of the codeline, you create a (conceptual) ver-
sion of the codeline. In reality, most users of the code base don’t need to identify each
change by a version number that indicates the total number of changed files in the
codeline. Certain versions are significant, including points at which there is a product
release, a branch, or a validated build. These versions on the codeline can be identi-
fied by labels.

Figure 0-3 .Branching a Single File and Merging with the Trunk

Figure 0-4 .Branching an Entire Codeline.

1 2

2.1 2.2

3

2.3

/main

/ReleaseBranch

1

2.1

2 3
Introduction (SBCHOO-Intro.fm 6/14/02) 5

Codeline and Branching Diagrams

The discussion up to this point in this chapter has illustrated the concepts of code-
lines, branches, etc. using the notation that this book uses for most of the examples.
This section summarizes the notation, and defines the symbols a bit more strictly. The
codeline diagram notation is based on the notation for UML activity diagrams, with
the addition of symbols to indicate versions and revisions, and with the variation that
the flow goes from left to right as time increases. The notation is based on the one
used in the paper Streamed Lines (Appleton et al. 1998), and was further inspired by
the diagrams in Michael Bays’ book Software Release Methodology (Bays 1999). As with
any notation, the purpose of this notation is to convey meaning clearly, so some of the
diagrams in the book may use additional symbols, or vary slightly from the descrip-
tion here where it helps to explain the subject matter.

Figure 0-5 shows the notation that we use in the codeline diagrams in this book

Figure 0-5 .Codeline Diagram Notation

branch

bugfix

Merge

Merge

Label

/main
Feature

1

/maint

Feature A

/bugFix
6 (SBCHOO-Intro.fm) Introduction (0)

Further Reading

• Tichy’s paper on RCS: “A System for Version Control” (Tichy 1985) is a clas-
sic paper on an early popular version control system.

Symbol Description and Notes

Ar rectangle with a bold border is the start of a code-
line. It often has an indentifying name

A circle is a version of the codeline, or a revision of a
file. A branch or merge point is also considered a ver-
sion. It sometimes has an identifier for the branch,
such as a version number. This can be blank.

A grey bordered rectangle within a codeline indicates a
change task, which can be identified by a description
inside the box.

An arrow with a dotted line indicates a merge from the
codeline at the start of the line to the codeline with the
arrowhead.

A solid arrow indicates a branch.

A document symbol, when it is attached to a codeline
start indicates the policy. You may also see this symbol
used informally to represent a document.

This symbol indicates a label, or an identified revision.
There will be a line going from the tag to the part of
the codeline that is indicated.

/branch

1.0

Label
Introduction (SBCHOO-Intro.fm 6/14/02) 7

• The paper “High Level Best Practices in Software Configuration Manage-
ment” by Wingerd and Seiwald (Wingerd and Seiwald 1998) provides a
good overview.

• Michael Bays’ book Software Release Methodology (Bays 1999) has excellent
descriptions of the concepts of codelines and version control.

• Babich’s book, Software Configuration Management: Coordination for Team Pro-
ductivity, is a classic (Babich 1986).

• Open Source Development with CVS (Fogel and Bar 2001) provides good
advice on how to use a common open source version control tool, CVS, on
open source projects, among other uses.

• Antipatterns and Patterns in Software Configuration Management (Brown et al.
1999) has a good collection of advice on what to do, and what not to do.

• The Appendix provides further sources on SCM and tools.
8 (SBCHOO-Intro.fm) Introduction (0)

PART 1

Background
(SBPart1Front.fm 6/14/02) 9

10 (SBPart1Front.fm) (0)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 1
Putting a System Together
For software configuration management (SCM) to help you work effectively as a
team you must understand how all the parts of the development environment inter-
act with each other and how SCM techniques fit in to the larger picture of a software
development effort. You use version control on a regular, if not daily, basis and using
it properly can make your development effort go faster and give you the flexibility
you need to work effectively. If you use it incorrectly it will slow you down. This
chapter describes the role that good software configuration management practice can
play in a productive development environment.

Balancing Stability and Progress

Any complex piece of software is the product of a team of people who need to work
together. They must coordinate ideas and code so that each team member can make
progress without interfering with the work of other people on the team. For example,
you might make a code change that implements a feature that you are responsible for,
but if you don’t communicate or coordinate with the rest of the team you may break
some other team members’ code unexpectedly.

Some development organizations take one of these extreme positions:

• Speed is essential, so we worry about quality and versioning later. Besides
we’re small enough that everyone knows what everyone else is doing.

• Quality is essential. We will work slowly, following processes to the letter,
regardless of how it frustrates people on the project, or reduces productiv-
ity. We work on one release at a time.

Of course, neither of these sounds entirely correct, but we do them anyway, because
each sounds like a really good approach, and if we have been burned by another
approach in the past, following one of these philosophies may lead us to believe that
we are avoiding problems that we’ve seen in the past. Consider the number of times
that you have experienced one of the following situations in a software organization:

• “We’re in code freeze. No one may check in any code until the product
ships.” This can be a period of 2 days or even a week. While this increases
stability for the to-be-shipped product in a simple way, it hurts work on
subsequent versions, and may even hurt the viability of a product, since
releases take longer to start and finish.

• “Just copy the files somewhere. I’ll use your version.” This is faster, but it
increases the risk of inconsistencies between developers, and can cause con-
fusing problems later.

• “It works for me! Do you have the correct version of the code?” While one
developer may have an environment that works, this is a symptom of
undisciplined and inconsistent use of version control.

• “We use this tool in development, but builds are done out of another ver-
sion control tool. Be sure to keep them in synch!” This “solves” the hard
problem of about having a consistent tool set, but using manual steps to
keep both code streams synchronized can cause errors and unpredictable
builds.
12 (SBCH01.fm) Putting a System Together (1)

Glacial Development

One of the most common issues that I see between release engineering and
the development organization has to do with finishing up a release. Typically
this is done with a “code freeze,” which is a period of time when access to the
current codeline in the version control system is restricted so that only critical
changes are made to the code. Since there is a risk that anyone can add a
destabilizing change at any time, this makes a certain amount of sense from
the point of view of those who want to ensure that they know what they are
releasing as a product. The conflict comes when the developers have work to
do for later releases at the same time.

If the codeline is frozen for too long (days or weeks) development either stops,
or developers resort to “unsafe” practices, like trading files to share code
(instead of using the version control system), or making lots of changes
between check ins, making it harder to back out a change later. These things
hurt quality and stability too, but it’s not as visible of a problem. One can avoid
many of these problems with a good understanding of the issues and how to
use the tools.

So, if long code freezes are a problem, why do they persist? They persist
because people are not using their tools well. You can avoid code freeze by
judicious branching. This assumes, of course, that the code is ready for freeze.
A too aggressive pre-checking validation requirement can lead people to start
copying files around instead of using the version control system.These are sit-
uations where the version control discipline has broken down, and version
control doesn’t fit in with the way that people work and people waste time. This
frustrates the individual developer, and will eventually frustrate management
when release dates slip (because of slow progress) or morale declines
(because of extra time that people put in to compensate for the slow progress).
This is often because version control processes and tools are put in place
before understanding how people work and how the product is structured.
There are some procedures that make sense for every environment. But for
most of the other cases, the techniques need to meet the needs of the team.

Because developers are creative people, they will often find ways to work
around processes that do not work. Here is another statement that some may
find controversial: Version control is a supporting discipline. Developers need
to work with version control and release management tools and techniques
because it is essential to track what they are developing. But version control
Putting a System Together (SBCH01.fm 6/14/02) 13

should support the developer’s work style. Since developers are smart they
will use techniques that help them get their work done.

The Role of SCM in Agile Software Development

Agile software development approaches acknowledge the reality of change in soft-
ware development, and suggest that you adapt your development methods to
acknowledge that some projects have high levels of uncertainty and risk. In agile
approaches “control focuses on boundaries and simple rules rather than prescriptive,
detailed procedures and processes.” (Highsmith 2002) Often people think of configu-
ration management and version control as process-heavy things that might get in the
way of the “real work” of coding. For many projects, SCM does get in the way, and
some organizations overcompensate and don’t use the tools to help them because of a
fear that a process is inherently limiting. Other organizations want control and have
so much process around version control that they hurt themselves. The right amount
of version control is appropriate in agile projects. The approach to configuration
management and version control that this book describes is most suited for agile
teams, where the development pace is rapid that you don’t want processes to get in
the way, but you don’t want to be stepping over each other either.

Often conflicts about software configuration management are because of the diffi-
culty of determining how much structure you need. Too little and chaos reigns, too
much and the environment becomes stagnant. Highsmith describes how this debate
is really about balancing adaptation with anticipation (Highsmith 2002). Highsmith
also observes that “one of the reasons for the divide between process and practice is
often the perception that onerous process reduces the incentive to use any process.”
This reflects the reality that what matters is not your process as much as what people
actually do.

A common area where the disconnect is obvious is in how a company handles
branching. It is often the case that a company’s branching model does not match its
business model. A company that wants frequent product releases may have complex
branching structures, and a need for time intensive merges. Another company may
have many customers using independent releases, but have few branches, trying to
manages the differences between the customer versions in some other way. This often
happens because they misunderstand their tools, techniques, or because they are
striving for some sort of ideal model that is inappropriate for their situation.
14 (SBCH01.fm) Putting a System Together (1)

Much of the heavyweight application of SCM techniques comes out of a desire for
perfection. Seeking an ideal isn’t always the best approach to a successful project. As
Gerald Weinberg says, “Reasonableness saves enormous amounts of time.” (Wein-
berg 2002)

SCM in Context

There are many good software development practices that current developers just
don’t follow, even though they have been around for a while, as Steve McConnell
comments (McConnell 2002). Incremental Integration and Source Code Control have
been around since 1980. These are two approaches that you can add to your process
and get a major gain in productivity with a minimum of effort. This book will show
you how.

Software Configuration Management (SCM) processes and tools support at least two
classes of tasks in the development process: management and day-to-day software
development. (Conradi and Westfechtel 1998) The management related tasks that
Software Configuration Management supports include identification of product com-
ponents and their versions, change control procedures, status accounting, and audit
and review. For day-to-day activities SCM helps you, as a developer, with version
control functions that allow them to accurately record the composition of versioned
software products as they are revised, maintain consistency between interdependent
components, and to building compiled code, executables, and other derived objects
from their sources.

This separation between management and development activities doesn’t really
make a lot of sense. The things that developers do are necessary for the management
support tasks to be meaningful; you can’t identify product components if there is no
product to identify. There are times when the SCM process — particularly the man-
agement-support aspects — seems to impede development work as opposed to
enhancing it. One reason for this is that the SCM processes are often defined with the
goals and needs of management first, and ignore the daily needs of the developers.
Another is that the processes don’t use the appropriate techniques, out of ignorance,
or a (misguided) attempt to avoid potential risks.

There are many reasons why organizations make the same mistakes in applying SCM
practices, and, as a result, frustrate developers, and reduce productivity and quality.
One reason is that some organizations lose sight of what the real goal of their work is.
The goal of a software development organization is to develop software that solves a
Putting a System Together (SBCH01.fm 6/14/02) 15

customer’s problem and deliver quality software. The definition of quality is impor-
tant here, so we use the definition: “value to some person.” (Weinberg 1991b)

Some organizations put a lot of energy into doing things that don’t help with the pro-
cess of making useful software. Some of these places talk a lot about “the customer”
and “quality” and “productivity” but their actions don’t always support those spo-
ken goals. Gerald Weinberg describes this sort of situation as a lack of congruent
behavior. (Weinberg 1986) Non-congruent behavior confuses people and hurts quality.

Some organizations make decisions that have more to do with avoiding change and
expense than with writing quality (and income-producing) software. Often these
decisions are well intentioned; they end up being counter-productive because they
are made without understanding all of the aspects of how developers work, and
without consideration of how their decisions affect other parts of the development
process. A team may not create a branch when a branch would appear to be helpful
because the manager of the team had earlier experienced branching as being prob-
lematic.These survival rules are useful for reducing risk, but when over applied can
increase risk. Gerald Weinberg says:

 “Survival rules are not stupid; they are simply over generalizations of rule we once needed
for survival. We don’t want to simply throw them away. Survival rules can be transformed
into less powerful forms, so that we can still use their wisdom without becoming incongru-
ent.” (Weinberg 1993)

While members of a team will spend large amounts of time and energy thinking
through how to design a software component, teams rarely put the same effort into
thinking about how they work. In particular many source control practices often
don’t fit the needs of all of their users. Often the SCM practices are established at one
point in time of the company, and are then continued somewhat blindly. One reason
that SCM practices don’t adapt to a team’s needs is that some of these practices are
organization-wide, and it is hard to justify, not to mention implement, global change.

A reason that practices may not meet the needs of the users in the first place is that
the easy target for changing version control process is the tool, and discussions of
how to work with version control often get lost in deciding what tool to get. Some-
times organizations decide that what they really need is a high-end (and powerful)
tool like ClearCase, and when the know that they can’t afford that, they decide that
they shouldn’t get something else, and they continue to use a tool that does not meet
their needs, for example, Microsoft Visual Source Safe.

In the quest for a good solution we often lose sight of the fact that there are many
small scale changes that can have a large impact on how we work. While a new tool
16 (SBCH01.fm) Putting a System Together (1)

might make a big difference, using your current tool effectively, and working within
its limitations also helps greatly. Another reason that source control is ignored is that
you can resolve most source control process issues through manual processes. While
this is work and has a cost, it is one that most managers don’t see. Similarly to plan-
ning for a product, it is important to consider the developers as a class of users for the
SCM Process. “People who are left out of planning invariably turn up late in a change
project to haunt you.” (Weinberg 1991b) In this case, the “haunting” will be visible in
terms of frustration, and decreased productivity.

This book will help you understand some of the techniques and processes of SCM,
and how to apply them in a way that allows you to work more effectively. Many of
the techniques can be applied incrementally and locally, so that you don’t need to
change the entire organization to improve the way that you work. It may also pro-
vide you with a means to explain how some day-to-day practices can support both
your needs as a developer, and the larger needs of a someone managing a product
release.

Keeping it Simple

Sometimes processes really do help get things done in a stable and repeat-
able way. Everyone involved in the work needs to have the same goal and
vision for a process to work. When the work styles of the release management
team and the development team don’t mesh, and the processes involve many
manual steps, there can be glitches that slow things down.

Consider the story of the company where the developers drive the process of
what is part of the product. When they want to start using a new third party
component, they release it into the repository, and everyone starts using it on
the next update. The release management team however, doesn’t just build
using what is in the repository, but only from a well defined list, and they don’t
pay attention to development announcements about updates. Invariably a
number of nightly builds will fail until the release team does them with the new
version. There are a number of responses to this problem. The release man-
ager can scold the developers, the release team can use the version control
tool’s reporting facilities to check for updates, or the release team can monitor
the development team’s announcements for updates.

Of these approaches, scolding is the least effective, and often, the most fre-
quently chosen approach. Having a common approach to the version control
Putting a System Together (SBCH01.fm 6/14/02) 17

process, or using tools to remedy differences can make things run much more
smoothly.

SCM as a Team Support Discipline

Encompassing the management and development support aspects of SCM, configu-
ration management, and in particular version control, plays a role in supporting the
work of teams. Version control can certainly benefit a one or two person work group,
but when you have more people than can comfortably manage to communicate
everything that they are doing on a project to each other, you need an infrastructure
to support communication. A version control system is the way that teams can get
the answers to questions about who made recent changes, when something broke,
what code customers are using, and what components are related. This is what we
mean when we say that software configuration management serves as a mechanism
for communication, change management, and reproducibillity.

To develop software you need to do obvious things like define requirements and
develop designs, writing code for the product and for tests and writing documenta-
tion. The hardest, and one of the most important things that has to happen is effective
communication. Communication is not just sharing status and general information,
but also sharing enough detailed information about what people are doing so that
teams can work together and be more productive. While engineers often spend a lot
of effort on design and implementation decisions, engineers and their managers
often leave teamwork issues to “just happen.”

You can realize important improvement in team productivity and software quality by
using the appropriate version control practices. Unfortunately, many version control
practices are often established without a good consideration of the things that influ-
ence how code is written. Some of these things include:

• The structure of the organization. A three person team in one room has differ-
ent needs than a large team spread across the globe.

• The product architecture. Some points in the architecture allow for more
decoupling than other points.

• The tools available. Some tools support some techniques more effectively
than other tools. If you have a tools that does not handle branching well,
you may want to come up with a different release model, or get a better
tool.
18 (SBCH01.fm) Putting a System Together (1)

For each of the these influences you could change factors themselves. Put your whole
team in one city (or in one room); fix the product architecture to reduce coupling; buy
a “better” SCM tool. These changes can be expensive. It can also be expensive
(though in not as obvious of a way) to not fix the other problems. We often find our-
selves in a position where the costs for changing a tool, for example, are very visible,
but the costs (in productivity, morale, etc.) in using the wrong tool badly, are hidden.
It may be easier to adapt the way that you use Version Control to the way that people
work than it is to change the environment. Chapter 2 discusses the role of organiza-
tions and teams in more detail.

Our goal in this book is to point out the solutions that are effective given the environ-
ment you must work in. You may be surprised in the improvements you can find in
small changes in process. You will also identify aspects of your environment that you
really should change. In the end we want to help you build better software faster, not
to use a particular process.

Some of the techniques are things that affect how the team works, and may need con-
sensus or management buy in. Some are practices that you and one or two colleagues
can do on your own.

There are many aspects to team communication, including organizations or manage-
ment. These things do need to be considered, since they have an impact on how peo-
ple work. This books is about the tools and techniques that you can use as a person
developing software to work cooperatively with members of your team, and mem-
bers of other teams. The way that teams communicate their work products to each
other is through their Software Configuration Management and Version Control
practices.

What Software Configuration Management Is

Like many things in our discipline of software development, software configuration
management means many things to many people. This section discusses some of the
dimensions of SCM and highlights the aspects that we are concerned with.

Software Configuration Management (SCM) serves at least two distinct purposes:
management support and development support.

A standard definition of software configuration management includes the following
aspects (Dart 1992):
Putting a System Together (SBCH01.fm 6/14/02) 19

• Configuration identification, which includes determining which body of
source code you are working with. This makes it possible to know, among
other things, that you are fixing a bug in the source code which is in the cor-
rect release.

• Configuration control, controlling the release of a product and changes to it
throughout the lifecycle to ensure consistently creation of a baseline soft-
ware product. This can include not only changes to source files, but also
which compiler and other tools were used so issues such as differences
between compiler support for language features can be taken into account.

• Status accounting audit, recording and reporting the status of components
and change requests, and gathering vital statistics about components in the
product. One question we may want to answer is: “How many files were
affected by fixing this one bug?”

• Review, validating the completeness of a product and maintaining consis-
tency among the components by ensuring that components are in an appro-
priate state throughout the entire project life cycle and that the product is a
well-defined collection of components.

• Build management, i.e., managing what processes and tools developers use to
create a release, so it can be repeated.

• Process management, ensuring that the organization's development processes
are followed by those developing and releasing the software.

• Teamwork, controlling the interactions of all the developers working
together on a product so that people's changes get inserted into the system
in a timely fashion.

Ideally a configuration management process should serve both broad organizational
interests as well as to make the work of a developer easier. A good SCM process
makes it possible for developers to work together on a project effectively, both as
individuals and as members of a team. While there are various tools that can make
the process simpler, tools alone are not enough. Successful development organiza-
tions will also use certain patterns for software configuration management

With respect to team interactions, a successful configuration management process
allows:

• Developers to work together on a project, sharing common code. For exam-
ple a developer of a derived class needs to stay in synch with whoever is
developing a base class, and a client of a class needs to be able to work with
the current version of that class.
20 (SBCH01.fm) Putting a System Together (1)

• Developers to share development effort on a module, such a class or simply
a single source file. This can be by design or to allow someone to fix a bug in
another person's module if the other person in unavailable.

• Developers to have access to the current stable (tested) version of a system,
so you can check if your code will work when someone else tries to inte-
grate it into the current code set.

• The ability to back up to a previous stable version of a system. This is
important to allow a developer to test their code against the prior consistent
versions of the system to track down problems.

• The ability of a developer to checkpoint changes to a module and to back off
to a previous version of that module. This facility makes it safer to experi-
ment with a major change to a module that is basically working.

Attaining all of these goals involves compromises. A cynic could paraphrase Otto
von Bismark’s remark “To retain respect for sausages and laws, one must not watch
them in the making” to apply to software systems and processes. We need to watch
how our processes evolve, attend to what works, and what does not work, and by
leveraging the experiences of others we can improve.

Version Control is an important part of making team software development work
effectively. Version control practices help people work on the same components in
parallel without interfering with each other’s work. Software Configuration Manage-
ment and Version Control practices allow you to do things like:

• Develop the next version of a piece of software while fixing problems with
the current one.

• Share code with other team members in a controlled way, allowing you to
develop code in parallel with others and join up with the current state of the
codeline.

• Identify what versions of code went into a particular component.
• Analyze where a change happened in the history of a component’s develop-

ment.

The next section identifies some of the tensions in a development project that inter-
fere with establishing good SCM practice.
Putting a System Together (SBCH01.fm 6/14/02) 21

The Role of Tools

The first question that people ask when they talk about version control is “what tool
are you using?” This is a very practical question, the brings out the important impact
that tools have on the way that we work.

While the tool influences how you work, it should not be the main concern. Of
course, tools with a feature set that is matched to your needs make things work bet-
ter. But the most important thing is to balance the capabilities of the tool with the
needs of the organization and the developers. It is critical to make the processes easy
so that people will follow them. Another aspect that this book shares with advocates
of agile development is that it is the people on a team and what they do that is impor-
tant, or as the agile manifesto says: “Individuals and interactions are more important
than processes and tools.”

When you find that an everyday practice needs a large number of (hard to remem-
ber) manual steps, you may want to question the capabilities of the tool, or the value
of the practice.

The appendix describes some common tools, and how to use them to implement the
patterns using the concepts of the tools. The resources section provides even more
information.

The Larger Whole

Tools, Product Architecture, and Organization are all important aspects of the soft-
ware development environment that we need to take into account when building
software systems, but when we let them drive the process at the expense of deliver-
ing quality software in a reliable manner we get into trouble. There is a lot to do
besides coding; documentation and testing are part of the process, and quality and
reproducibility are things that help get a product out. The next chapter discusses in
more detail what the other pieces of the picture are, and how SCM fits into this pic-
ture

This Book’s Approach

This book approaches the problem of using software configuration management and
version control by looking at the overall environment within which you use version
22 (SBCH01.fm) Putting a System Together (1)

control, and by demonstrating how to solve problems after considering your specific
environment.

This book places a number of best practices that are well documented in the context
of a team’s work style and the constraints of your organization. This book does not
present a set of rules that you should follow, but rather a set of practices that work
together (with variations).

The practices are cast in terms of patterns. We discuss patterns in general inChapter 3
You don’t need to understand patterns to use the ideas in this book, though you may
get an added benefit if you do.

Unresolved Issues

How do we improve the way that we use version control? The next chapter describes
how a pattern oriented approach is helpful.

Further Reading

This book is not about software architecture or process, per se, so we cannot go into
as much detail about these issues that we would like. The following references pro-
vide more detail.

• Garlan and Shaw discuss give a good overview of architectural styles(Shaw
and Garlan 1996).

• The Pattern Oriented Software Architecture series describes a number of archi-
tectural patterns (Schmidt et al. 2000; Buschmann et al. 1996).

• The UML User Guide discusses the various architectural views suggested by
the Unified Process (Booch et al. 1999).

• Jim Highsmith provides a good overview of the current set of agile tech-
niques in his book Agile Software Development Ecosystems (Highsmith 2002).

An important aspect of improving processes is detecting the problems in a organiza-
tion and influencing people to change.

• Seeing Systems. Unlocking the Mysteries of Organizational Life by Barry Oshry
(Oshry 1996) is an useful and entertaining book about how to detect cycles
of behavior that need to change, and how to change them.
Putting a System Together (SBCH01.fm 6/14/02) 23

• Getting to Yes (Fisher et al. 1991) is a classic book on negotiation, and infor-
mal negotiation is something that you may find yourself doing when you
try to make changes in the way people work. Getting Past No (Ury 1993) is
also worth a read.

• Becoming a Technical Leader by Gerry Weinberg (Weinberg 1986) has great
advice on leading from any role.
24 (SBCH01.fm) Putting a System Together (1)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 2
The Software Environment
 To use software configuration management (SCM) properly, you need to understand
how its techniques fit in to the larger picture. This chapter discusses some of the other
aspects of the development environment and the processes that we use to create and
maintain them so that we can understand how SCM fits in.

General Principles

By Software Configuration Management, we mean the set of processes that one uses
to create and maintain a consistent set of software components to release. Version
Control is the part of the SCM process that a developer sees most often. It manifests
itself in terms of your version control tool and how you use it. Often you will associ-

ate the use of a tool with a set of policies or rules for how to use it to follow the lifecy-
cle that the organization needs (checkins, builds, releases, etc.). Sometimes the
policies are enforced automatically, other times developers must follow a manual
procedure.

We can’t give you one set of rules to say how to use version control, or which tool to
use. How to use it (or any other tool or technique) depends strongly on your situa-
tion. Just as you might use different tools for building a dog house as opposed to a
summer vacation cottage, different software project teams need different approaches.
If you use big complicated tools for a small project where everyone communicates
well, you may slow things down, and increase costs. Likewise, trying to blindly
apply techniques that worked well in an initial product release project in a 5 person
startup may cause trouble in the same startup 6 months later with 20 people working
on release 3 (and maintaining release 2, and release 1).

Working in a team adds a need for communication and also changes the way that you
would execute these principles. For a 1 person project you can try to build your soft-
ware system and accompanying development environment, based solely on first
principles of “good” coding practice. Some basic version control system will help you
with your memory, but you should not (usually!) have any communication issues.
Once more than one person is involved in building the system communication and
interaction between developers comes into play. Each software system is built in a
context that shapes the code and the patterns of work. The same principles that you
use as an individual developer that also apply when you work as part of a team. Each
team, and every project is different, so no one process will work. Version control is a
core part of the communication mechanism. You need to vary the details of how you
use version control based on your situation. To do that you need to take a step back
and look at the places where software is built.

There are a few general principles that we can apply to using configuration manage-
ment on any software project. The details of how to apply the principles will vary,
depending on the size and nature of the team. Some of these principles are:

• Use version control. Version control is the backplane on which a software
organization communicates work products among themselves. This sounds
obvious, but some organizations do not really track versions. Even if they
have a version control tool, they do not use it.They copy files between
developers without checking them in. They have no way of identifying
what went into a release and how to reproduce the system at a point in
time. Some places need more lightweight tools and processes than others,
and some development techniques allow for more flexibility in the process,
26 (SBCH02.fm) The Software Environment (2)

but every team needs to have a way to do version control, and needs to use
it to communicate code changes among the members.

• Do periodic builds, and integrate frequently. Have some sort of periodic build
process that builds what looks like the current version of the software so
that people can see how well things fit together. The longer you put off inte-
gration, the harder integration problems will be. How often you need to do
this depends on a a number of details about your organization. Extreme
Programming (Beck 2000), and other agile approaches say to integrate con-
tinuously, but for simple systems that may cause too much overhead. Erring
on the side of integrating too often is generally better, but integration takes
time, and you want to find the point where integrating more often adds
speeds up the overall process.

• Allow for autonomous work. Every team, even those with one person, may
need to work on various points in time of the codeline. Each team member
should be able to control what versions of what components they are work-
ing on. Sharing “common” components may work well most days, but
when you need to diverge from working on the latest code, it will probably
be for an emergency.

• Use tools. If you have too many manual processes people may make mis-
takes or simply skip a step out of frustration or perceived need. Be lazy and
write tools.

How you apply these general rules depends on the environment that you are build-
ing your software in. And, of course, there are other software engineering practices
that you also need to apply around testing, coding, and related issues. See the Refer-
ences section for pointers. The next sections describe some of the elements of the soft-
ware environment.

What Software is About

In its most concrete form, a software system is the sum of all of its code. You write
code and you end up with an application that does something useful. There are also
other artifacts that make the system run; data, documentation, and anything else you
need for your system. The code, however, defines the shape of the other artifacts.
Without the code, or these artifacts, there is nothing to deliver to a customer or user.

To understand how you build a software system you need to think about more than
just the code and other physical artifacts. You need to understand how the people on
The Software Environment (SBCH02.fm 6/14/02) 27

the team work, how the product is structured, and what the goals and structure of the
organization are. We often ignore social issues such as organizational structure and
politics, thinking them secondary to what we perceive to be the main goal: building a
software system. Why this sounds appealing (focusing in on the core goals and all
that), these other factors are important to consider. If you don’t consider them, they
will get in the way when you try to build and deliver systems quickly.

It’s easy to get lost in all of the other factors. Corporate politics alone can cause you to
spin endlessly. One way to think about the software environment where you are
using configuration management is to model it as consisting of the following struc-
tures:

• Where the developer codes, the Workspace. This is the day to day code envi-
ronment of the developers.

• Where the coding takes place, the Organization. The developer works in the
context of an organizational structure. There are teams developing software,
testing, marketing, doing customer support, etc.

• Where the code fits in: The Product Architecture. Along with the product
architecture is the Release structure, which specifies how many releases are
being developed together

• Where the code (and code history) is kept: The Configuration Management
Environment. This includes tools, processes, and policies.
28 (SBCH02.fm) The Software Environment (2)

These structures all have policies and processes associated with them that sustain
them. While it’s not always obvious, these structures influence each other, and if you
don’t take the influences into account, your work may be harder than it needs to be.

 Some examples of these influences are:

• The organization influences the structure of the code and the architecture
(Conway’s Law)

• The organization and the architecture both influence version control poli-
cies. A less tightly coupled architecture can be developed in parallel more
easily than a tightly coupled one. A small team in one room can communi-
cate more effectively than a large team spread across the globe. In each case
version control policies can compensate.

• The version control environment and the organization influence the struc-
ture and use of workspaces. You can use some policies to alter the way peo-
ple work; this isn’t always the best way to do things since it is working
backwards in many cases, but it can have an influence.

Often tools and mechanisms for work style and version control fail because they are
applied in the absence of an understanding of the reality that the mechanisms really
need to work well with the existing environment.

Figure 2-1 .The Interactions Between Elements of the Environment

Organization

Version Control

Architecture
The Software Environment (SBCH02.fm 6/14/02) 29

Policies influencing work

One company that I worked at had a very rigorous pre-check in testing regime
that developers had to follow. You had to run a very long suite of tests --
approximately 30 minutes -- before checking in any code.

In the lifecycle of this company, 30 minutes was a long time, so people worked
to avoid the long tests by either checking in less often, which meant that a
check in would add more than one feature or fix more than one bug, or skip-
ping the tests, which hurt the reliability of the code base. There are more
extreme examples of policies affecting work. The developers eventually lob-
bied for a pre-check in smoke test that took a couple of minutes to run, and the
processes got back in sync with good work practices.

The next sections discuss each of the development structures, and their interactions,
in more detail.

The Development Workspace

Software development happens in the workspaces of the developers in the team. A
workspace simply is the set of components that a developer is currently working
with, including source code that the developer is editing and is using for reference,
build components necessary to run the software, and third party components. The
PRIVATE WORKSPACE (6) pattern discusses the components of a workspace in more
detail.

Each developer will have one or more workspaces depending on the number of
projects that he is working on. The build team may also have an integration work-
space to do periodic builds in.

Architecture

“Software architecture” is a widely used, and widely misunderstood phrase. The
phase can mean many things depending on the person using the term and the audi-
ence. Sometimes different understandings of what “architecture” means can lead to
legal disputes. Steve McConnell recounts a story about being an expert witness in a
30 (SBCH02.fm) The Software Environment (2)

case where a company sued a VP over non performance of work duties, in part
because they had a different understanding of what an ‘architecture’ was (McConnell
2000).

The one thing that most definitions have in common is that the architecture defines
some aspects of the structure of the system. IEEE Std. 610.12 defines architecture as
“The organizational structure of a system of component.” The architecture places
constraints on where and how parts fit together and how easy it is to change or add
functionality. Even if there is no explicit architecture document, or architectural
vision, there is an implicit “architecture” that the existing body of code defines. The
code establishes a structure that you need to work within, perhaps changing it as you
go. Even in a “green fields” development project, there are still “architecture” deci-
sions that will constrain software decisions, including, but not only, method of com-
munication, language, choice of database.

For the purpose of discussing team software development we define architecture as
“A description of how the parts of the software fit together that provides guidance
about how the system should be modified.” This includes both the logical and physi-
cal structure of the system, including relationships between components, deploy-
ment units, and even the way that the code is structured in the source tree.

The role of architecture in developing a version control strategy is to establish the
structure of the version control modules, and therefore how we make concurrent
work easier. Printer writes that “software architectures represent another mechanism
of interaction supporting collaborative work at a higher level of systems abstraction”
(Grinter 1995).

The architecture influences this because the architecture defines:

• What comprises a deliverable unit
• The communication paths among the units
• and, indirectly, The directory structure and other structural aspects of the

source code respository.

For example, one way to allow concurrent work is to design a system using a Pipes
and Filters architecture (for example, (Buschmann et al. 1996)). At a finer level of
detail, you can decouple systems using patterns such as Parser-Builder (Stephen P
Berczuk 1996a), or Visitor ((Gamma et al. 1995)). These patterns each allow teams to
treat the code that they own as fairly separate from other teams’ code. The Pipes and
Filters approach can be a way to design a system that is being built by teams a large
distance from each other. It is entirely possible to structure your source tree in a way
The Software Environment (SBCH02.fm 6/14/02) 31

that conflicts with this goal, and if you ignore integration process issues, the architec-
ture alone will not save you.

An architecture comprises a number of views, each of which exposes the part of the
picture that you care about in a specific context. The UML (Booch et al. 1999) takes
this approach by defining the following 4 views as well as a Use Case view that
describes what the software does (Krutchen 1995):

• Implementation, which defines units of work, at various degrees of granular-
ity

• Deployment, which specifies where physical components are put. The
deployment structure has a strong impact on how software in built.

• Design, which is the lower level details. Except for the way that the class
design effects the module structure and the dependencies between compo-
nents, this has the least effect on how the version control should be struc-
tured.

• Process, which affects performance, scalability and throughput. This has the
least relevance to our discussion, though it is, of course, important.

Architecture is heavily influenced by organizational structure. There are occasions
where an architecture can influence the formation of an organization, but most often,
the product architecture is developed in an existing organization.

Architecture can be organized with organization in mind. The architecture may
match the structure of the organization, based on location, the skill levels of develop-
ers of components.

Modularity leads to decoupling, which adds concurrency to the development pro-
cess:

Modularity is about separation: When we worry about a small set of related things, we locate
them in the same place. This is how thousands of programmers can work on the same source
code and make progress. We get in trouble when we use that small set of related things in lots
of places without preparing or repairing them.(Gabriel and Goldman 2000)

The architecture and organization have an effect on the best way to partition source
code into directories:

• The Architecture/Module Structure. The products module structure is the
strongest influence on the source code structure. A typical partitioning is to
have the source code for one module in one directory, so that you can man-
age the files more easily. if you are using a language that has header files,
like C++, or interface definition files, like COM, or CORBA IDL files, you
may want to put these files in an common location, apart from the bulk of
32 (SBCH02.fm) The Software Environment (2)

the source code; this makes it easier to ship interface definitions to custom-
ers if you provide an API.

• The Team structure. The number of people working on a project, the num-
ber of people working on a module. Modules may be grouped logically
based on the people working on them. This may not always be optimal, but
it happens.

• The particulars of your development environment. Do you have symbolic
links? What is your programming language?

The Organization

This section discusses some of the aspects of an organization that affect the way that
software systems come into being. This is a large area, which has research papers
(Allen 1997b, 1997a; Allen et al. 1998) and entire books (Weinberg 1991a; Fred Brooks
1975) devoted to it, so we will only mention some of the more relevant factors here.

Software development is, in many respects, a social discipline.The organization can
have a significant influence on how a product is designed and how teams are struc-
tured. Things can get difficult when your development approach conflicts with the
structures that the organization imposes. Changing the organizational structure is
often the best, if most difficult, fix. Even if changing the organization is impossible,
the real danger is in not acknowledging these influences and focusing only on the
immediate programming tasks.

Organization has an influence from the perspective of workspace structure and ver-
sion control because the structure of the organization constrains communication. The
organization affects communication by the distance between people and teams. Dis-
tance is a measure of how hard it is for teams and team members to interact. It can be
about physical distance, but not always. Organizational structure that divides
responsibilities, which can also make it communication harder if the responsibilities
are not divided in a manner consistent with the needs of the application.

The organization can be more subtle in it’s influence on the architecture and the way
that you work. The nature of the organization and its culture constrain the team
dynamic, the architecture, the goals of the development process, and how problems
are handled.

 Distance is about:
The Software Environment (SBCH02.fm 6/14/02) 33

• Physical location. Teams that are not physically close can have a lower
bandwidth of communication.

• Culture and team dynamics. An appropriate culture can result in teams that
are physically far apart having very good communication, and can also
result in people in the same room having very poor communication.

• Organization structures that dictate communication paths. This is an aspect
of culture, since communication need not follow corporate structures, but if
this is an ethic in your organization, then you might do well to have the
architectural communication paths follow the organizational boundaries

You need to be aware of the effects of organizational distance, and we encourage you
to work to be a change agent to improve the long term picture, but simply building
your work structures so that they are robust in the face of these organizational issues
will generate a big win.

Some other organizational influences include:

• Skill sets of people.
• Distance, which encompasses many things, including physical distance.
• Values and culture
• Location of personnel and other resources
• Team stability
• Type of company: consulting company vs. product company vs. product

company with customer specific changes.

The structure of an organization can have a large impact on how the software is built,
and hence coordination needs. Organization forces can have a very strong impact on
the product architecture, as well as having controlling process aspects such as when
and how releases get created, tested, etc. It is beyond the scope of this book to tell you
know to match the product process, architecture to adapt and leverage the structure
of the organization. We will briefly describe some of the issues so that you can better
understand them.

While many say that an ideal development environment has developers who are near
each other, and who communicate effectively, many real organizations have resources
that are geographically distributed, and you need to help them to work well together.
One answer is to distribute responsibilities so that remote groups can very well
defined interfaces between them, and few dependencies. You will also need to struc-
ture the version control system so that people at all locations can see all the code eas-
ily.
34 (SBCH02.fm) The Software Environment (2)

Some of the influences of organization on architecture that are particularly relevant
include:

• Module structure ((Bass et al. 1998)). Modules should be developed by peo-
ple who can work well together, and aspects such as geography or technol-
ogy experience may dictate that certain components should be developed
by certain groups. There is an interplay with the product architecture here;
you may have to make the choice of assigning a component to a group with
the most appropriate technical experience, for example, or a group with
lesser technical skills, but that is in a better position to interact (by whatever
means are appropriate -- this is not an argument for geographic proximity)
with the groups that interface with its work product.

• How often all of a systems components are integrated integrate is often a
function of organizational policy.

• Workspace management: How you set up your local development environ-
ment and how your workspace related to others.

• Version control and identification: how you use source control tools and
other means to coordinate changes with others, publish your changes, and
reproduce environments, such as when you need to fix a bug in an earlier
release. This includes issues such as branching and labeling, which are often
faced with much consternation.

• Coordination: How you work together with other teams and developers.
• Identification: How you know what you built.

The Big Picture

Given all of the things that have a part in building a software system, it is easy to lose
track of what your primary goal is, which is to build a software system. It is easy to
get overwhelmed by the technologies and techniques that you use as part of the pro-
cess. Version control, configuration management, build, testing, pair-programming,
branching and other process things, are all aspects of the software engineering envi-
ronment. These techniques support the process. A goal is not to branch, for example.
Branching is one way to accomplish concurrent development, or isolating a line of
work. This may seem like an obvious statement, but I have seem a lot of energy
expended on figuring how to accomplish tasks for which there were other, simpler,
ways to reach the end goal. An excellent bit of advice to keep in mind as you read this
book is “Don’t mistake a solution method for a problem definition, especially if it is
your own solution method” (Gause and Weinberg 1990).
The Software Environment (SBCH02.fm 6/14/02) 35

Putting together all the influences of architecture, organization, and configuration
management on each other, we see that the big picture view of an SCM environment
encompasses the tools and process for identifying, organizing, controlling, and track-
ing both the decomposition and recomposition of a software system’s structure, func-
tionality, evolution, and team work. An effective SCM environment is the glue
between software artifacts, features, changes, and team members.

Further Reading

• Steve McConnell has a few books that cover best practices for coding and
teamwork, in particular, Rapid Development (McConnell 1996), and Code
Complete (McConnell 1993) have some excellent guidelines.

• The Pragmatic Programmer (Andrew Hunt and Thomas 2000) talks about the
value of using tools to automate processes and procedures.

• The Practice of Programming by Kernighan and Pike (Kernighan and Pike
1999) says quite a bit about the value of automation and tools.

• Linda Rising and Mary Lynn Manns provide some guidance on introduc-
ing new ideas in their paper Introducing Patterns into Organizations (Manns
and Rising 2002).

• Alistair Cockburn gives some good advice about writing use cases in (Cock-
burn 2000). Patterns for Effective Use Cases (Adolph et al. 2003) provides a
patterns-based approach to writing use cases.

• David Kane and David Dikel’s book Software Architecture: Organizational
Principles and Patterns (Dikel et al. 2001) is an excellent source for informa-
tion about what Architecture is and how to use it.
36 (SBCH02.fm) The Software Environment (2)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 3
Patterns
For configuration management to help you work effectively as a team you must
understand how all the parts of the development environment interact with each
other. One way to model this is to think about the development process in terms of
the relationships among the patterns in the development environment.

You do not need to master the concepts of patterns and pattern languages to find
value in this book, but the pattern approach is an easy way to think about how the
elements of a system work together as they compose a system. This chapter explains
what patterns are, and how a pattern language can help you understand and
improve your team process, and it gives an overview of the patterns in the book.

About Patterns and Pattern Languages

A solution only makes sense if you apply it at the right time. A pattern language is a
way to place solutions in the context of the things that you’ve already done.

There are many books and papers that talk about patterns for software, architecture,
organizations and teams, and technology development, and we won’t try to cover all
of that in this chapter. This section will give a brief overview of what patterns are
about, and provide references if you want more detail.

A simple definition of a pattern is a “solution to a problem in a context.” Each pattern
in a pattern language completes the other patterns in the pattern language. In that
way, the context of a pattern is the the patterns that came before it. This means that a
pattern fits within other patterns to form a pattern language.

The idea of patterns and pattern languages is originally from work that the architect
Christopher Alexander did in building architecture to describe qualities for good
architectural designs. In the seventies he started using pattern languages to describe
the events and forms that appeared in cities, towns, and buildings in the world at
large.

Alexander talks about a pattern as something that “describes a problem which occurs
over and over again in our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice.”(Alexander et al. 1977). Alexander defines
a pattern as “a rule which describes what you have to do to generate the entity which
it defines.” (Alexander 1979) A pattern describes a solution to a problem in an envi-
ronment “in such a way that you can use this solution a million times over, without
ever doing it the same way twice.” (Alexander et al. 1977) Patterns according to Alex-
ander, are more than just solutions. They are good solutions.

And there is an imperative aspect to the pattern. The pattern solves a problem. In is not merely
“a” pattern, which one might or might not use on a hillside. It is a desirable pattern; for a per-
son who wants to farm a hillside, and prevent it from erosion, he must create this pattern in
order to maintain a stable and healthy world. In this sense, the pattern not only tells him how
to create the pattern of terracing, if he wants to; it also tells him that it is essential for him to do
so, in certain particular contexts, and that he must create this pattern there (Alexander 1979).

Alexander’s patterns set out to be more than just cookbook solutions.
But when properly expressed, a pattern defines an invariant field which captures all the possi-
ble solutions to the problem given, in the stated range of contexts.(Alexander 1979)

A pattern is a rule for resolving forces, but the important thing is that it fits in with
other patterns:
38 (SBCH03.fm) Patterns (3)

We see, in summary, that every pattern we define must be formulated in the form of a rule
which establishes a relationship between a context, a system of forces which arise in that con-
text, and a configuration which allows these forces to resolve themselves in that context (Alex-
ander 1979).

Alexander's pattern language is “a system which allows its users to create an infinite
variety of those... combinations of patterns which we call buildings, gardens, and
towns.” (Alexander 1979) Alexander documents patterns that exist in our towns and
buildings. For example, one of Alexander’s patterns is HALF PRIVATE OFFICE, which
describes how to achieve the right balance between privacy and connection to office
work.

Alexander’s pattern languages are very ambitious, and the pattern language that he
has authored can give you much insight into architecture and urban planning. It was
also the inspiration for the patterns in software.

Patterns in Software

While the initial work about patterns was about building things on a human scale,
we can apply the basic ideas of patterns to software development. Using and writing
patterns is about the quest for objective quality. Software development involves peo-
ple working together to build things. These things are often similar to other things
that were built in the past. In some software development organizations the process
works well because the teams apply techniques that work, and cast aside techniques
that do not. In other organizations they don’t, so there must be something that we can
learn from the successes and when to apply the techniques that worked.

The first major work in software patterns was the book Design Patterns (Gamma et al.
1995). This book catalogs some key techniques in object oriented design with very
good descriptions about when and how to implement them. Design Patterns does not
capture the full power of patterns because each pattern stands by itself, and you still
need a good understanding about software systems to put them together to build
something larger. To help people apply design patterns books have been written to
show how to implement these patterns in various situations (Vlissides 1998) and in
other languages (Alpert et al. 1998).

 Other books and writings on software patterns address architecture issues (Bus-
chmann et al. 1996), (Schmidt et al. 2000), and organization issues (Coplien 1995), but
the patterns are still not connected in languages. By not being connected, finding the
correct pattern and applying it in the correct situation requires a deep understanding
Patterns (SBCH03.fm 6/14/02) 39

of the patterns and the situation. While you do need to understand something about
the patterns and what you are doing to benefit from a collection of patterns, this need
for finding your way through the patterns reduces a major benefit of patterns,
namely as a way to navigate through a set of complex trade-offs and implement a
good solution.

Pattern languages are useful for documenting software architecture principles, par-
ticularly object-oriented systems because of the emphasis on structure in OO sys-
tems. They can and have been used to describe architecture systems in other
paradigms. Some of the existing pattern languages and collections about software
include pattern languages that describe how to build social structures such as soft-
ware development organizations(Coplien 1995) and (Olson and Stimmel 2002), pat-
terns on architectural principles (Buschmann et al. 1996), (Schmidt et al. 2000). The
“Further Reading” section at the end of this chapter lists some more examples.

This book describes a pattern language that works at the intersection of the team and
the architecture: the developer’s workspace and its interface to the version control
system. We talk about patterns that describe how people build software on a human
scale. In particular, we describe patterns that people use when applying Software
Configuration Management techniques.

Configuration Management Patterns

Patterns are particularly useful way to think about software configuration manage-
ment for the following reasons:

• Software Configuration Management (SCM) involves how people work in
addition to the mechanics of how the code is built.

• SCM involves processes for doing things, and the artifacts that result. Pat-
terns are particularly good at describing the process and thing aspects at the
same time.

• While there are many “best practices” for SCM, to use them effectively, you
must understand how they relate to other practices that you use, and on the
environment in that you use them.

• Small local changes in SCM practices can lend a large improvement to the
process; small changes, and organic growth can effect change; you don’t
need high level management buy-in, though it can help.
40 (SBCH03.fm) Patterns (3)

When you think about the way that the members of a team work together some of the
first words that come to mind are process and behavior. Processes and behaviors are
dynamic things, and dynamic things can be hard to understand. People are better at
modeling static situations and later extending the static models to include behavior.
We know how to describe what a building looks like, and given a set of diagrams we
can build one that matches the specification quite nicely. We have a harder time mod-
eling systems that have people in them. But static structures do not appear of their
own accord, and they don’t do anything, so you need processes to create and sustain
them; this is where processes come into play. The software architecture, the way a
developer’s workspace is configured, and the way that the SCM system is structured
are all sustained by the processes that you use each day.

For a team to build software in a consistent manner you need people to implement
processes consistently. There a a few ways to get that consistency. Goodwill might
work, but is better if behaviors are enforced by the tools and the environment. Some-
times this is hard to do, and you need to allow for situations that your didn’t expect,
otherwise people may view the processes are arbitrary and bureaucratic rather than
useful.

When there are manual procedures, you need to motivate people to follow them.
People tend to follow processes more closely when they understand the rationale
behind the processes. Understanding the rationale allows people to make good
judgement calls when the process does not precisely cover the situation at hand. It
helps to be able to explain the process in terms of the structure it supports. But pass-
ing on a complete understanding of the system takes time.

There are some static things that underlie all of the processes that go on in a software
engineering environment. Things like source code modules, executables, version con-
trol systems are concrete things; there is a process that you use to change things, but
the process is closely tied to the other parts of the environment.

We want to take the “simple” things that we understand, and then compose them to
describe how to help developers work together in teams.

Using patterns is different than other ways of looking at problems because how the
patterns relate to each other is important as the problem and solution that they
solve.(Stephen Berczuk 1994)

Some of the patterns here may seem obvious, but the details of how to get there are
not always so obvious. This is part of their value. Alexander says that the process of
applying patterns is valuable” not too much because it shows us things which we
Patterns (SBCH03.fm 6/14/02) 41

don’t know, but instead, because it shows us what we know already, only daren’t
admit because it seems so childish, and so primitive.” (Alexander 1979)

Structure of Patterns in this Book

The patterns in this book have the following parts:

• A title that describes what the pattern builds.
• A picture that can serve as a metaphor, and perhaps a mnemonic, for the pat-

tern. The pictures in this book are from things in the real world of the past,
rather than of software or technology. We also want to emphasize that the
solutions here do have analogs in the “real world,” that is, outside of soft-
ware. We also hope that this interjects an element of humor, allowing you to
better remember the pattern.

• A paragraph describing the context of the pattern; that is, when you should
consider reading the pattern. In general, this will contain reference to other
patterns, some of which are in this book, others that others have published
elsewhere. Since there are aspects of the team development problem that we
did not cover, there may also be a prose description.

• A concise statement of the problem that the pattern solves in bold.
• A detailed problem description illustrating trade-offs, some dead end solu-

tions, and the issues that need to be resolved.
• A short summary of the solution
• A description of the solution in detail
• A discussion of unresolved issues, and how to address them. This will lead

you to other patterns that can address these problems.

The pattern chapters may also have a section that suggests ways to learn more about
the topic of the pattern.

The Pattern Language

This section will briefly describe how the patterns in this book are organized, and
then discuss how to use the book.

As you work read through the patterns you may find that some match your current
practice, while others do not. Teamwork is a complicated thing, and a there is no sim-
ple cookbook-like approach to using the patterns in this book that will work for
42 (SBCH03.fm) Patterns (3)

everyone. The best way to approach the patterns is to read through them all until you
have a high-level understanding of them, and then work through the patterns that
are particularly relevant to you. After you have done this (or if you want to start
attacking your problems now, here is one approach that we suggest starting out with:

• Identify the global problem that you are trying to solve. If you are reading
this book, you are probably considering how to get team members to work
together more efficiently.

• Look through the pattern context and problem description sections to iden-
tify the patterns that you already use in your organization, as well as any
patterns that seem to solve pressing problems. The context sections mostly
consist of other patterns in the language, but since no pattern language can
be totally complete, the context of some patterns many describe a situation,
rather than reference patterns.

• Once you identify which patterns you already have in place, start with that
pattern. If you are trying to establish “mainline” development, start at the
first pattern in the language.

• Apply the patterns as the language directs by looking at the context and
unresolved issues sections.

• Repeat this process until you have worked through the language.

Each pattern can also stand on its own to some degree.

This book shows one path through the patterns, that for doing Mainline develop-
ment. Parts of the language may be relevant for other situations. For example, the Pri-
vate Workspace will be useful to you regardless of the sort of environment that you
use.

These patterns are independent of the tools that you use. Some tools support some of
these concepts explicitly, some less directly. But the concepts have proven themselves
useful in may development environments. For example, some tools don’t support
branching and merging as well as other tools. Clearly these are not practices that you
want to do routinely without tool support, but there are times when the even rudi-
mentary support for branching will make your life easier, as opposed to fearing
avoiding branching. Where appropriate we discuss tool support in general terms so
that you can see what features you need if you are looking for tools. We will discuss
examples using common tools, but we will try to keep them at a level that will allow
the book to stay current as tool interfaces change.
Patterns (SBCH03.fm 6/14/02) 43

The pattern language in this book is focused on a team of developers working off of
one (or a small number) of codelines for any given release. These developers work in
their own private workspaces.

There are some issues around codeline organization for large projects that we do not
address in full, but the book is more about how things work in the local development
environment. For a wide range of systems the principles hold equally well.

Overview of the Language

Figure 3-1 shows the patterns in this language. The arrows show the relationships
between the patterns that the context and unresolved issues section of each pattern
describes. An arrow from one pattern (A) to another (B) means that pattern A is in the
context of pattern B. This means pattern B is most useful once you have already
thought about using pattern A.The arrow from A to B also means that pattern A
needs pattern B to be complete.

The patterns in this pattern language can guide you towards establishing an active
development environment that balances speed with thoroughness, so that you can
produce a good product quickly. After first two patterns, the patterns fall into two
groups, patterns that describe the structure of your workspace, and patterns that
describe the structure of your codelines.

There are other approaches to development, than the Mainline approach that we dis-
cuss here. The Mainline approach works well in many circumstance, and other
approaches may share many of the same patterns. It is important to remember as you
44 (SBCH03.fm) Patterns (3)

read through these patterns that, while we hope that this advice is useful, only you
understand what your set of circumstances is. Apply the patterns with care

The patterns in the language can be grouped into two sets: codeline related patterns
and workspace related patterns

The codeline related patterns help you to organize your source code and other arti-
facts in an appropriate fashion, both in terms of structure and time

The patterns relating to codelines are1:

• MAINLINE (4)
• ACTIVE DEVELOPMENT LINE (5)
• THIRD PARTY CODELINE (10)
• CODELINE POLICY (12)

Figure 3-1 .The SCM Pattern Language

1. References to patterns will show the name of the pattern, followed by the chapter number in parentheses.

Unit Test
(13)

Task Level
Commit

(11)

Regression Test
(15)

Private
Workspace

(7)

Active
Development Line

(5)

Task Branch
(19)

Codeline Policy
(12)

Integration Build
(9)

Private System
Build
(8)

Third Party
Codeline

(10)

ReleaseLine
(17)

ReleasePrep
Codeline

(18)

Mainline
(4)

Smoke Test
(13)

Repository
(8)

Private Versions
(16)
Patterns (SBCH03.fm 6/14/02) 45

• PRIVATE VERSIONS (16)
• RELEASE LINE (17)
• RELEASE-PREP CODE LINE (18)
• TASK BRANCH (19)

Figure 3-2 shows these patterns.

The patterns related to workspaces are:

• PRIVATE WORKSPACE (6)
• REPOSITORY (7)
• PRIVATE SYSTEM BUILD (8)
• INTEGRATION BUILD (9)
• TASK LEVEL COMMIT (11)
• SMOKE TEST (13)
• UNIT TEST (14)

Figure 3-2 .Codeline related patterns

Active
Development Line

(5)

Task Branch
(19)

Codeline Policy
(12)

ReleaseLine
(17)

ReleasePrep
Codeline

(18)

Mainline
(4)

Private Versions
(16)
46 (SBCH03.fm) Patterns (3)

• REGRESSION TEST (15)
Patterns (SBCH03.fm 6/14/02) 47

Figure 3-3 shows these patterns.
48 (SBCH03.fm) Patterns (3)

Figure 3-3 .Workspace Related Patterns

Unit Test
(13)

Task Level
Commit

(11)

Regression Test
(15)

Private
Workspace

(7)

Active
Development Line

(5)

Integration Build
(9)

Private System
Build
(8)

Third Party
Codeline

(10)

Mainline
(4)

Smoke Test
(13)Repository

(8)
Patterns (SBCH03.fm 6/14/02) 49

Unresolved Issues

This chapter gave you an overview of pattern languages in general, and the pattern
language in this book. The rest of the book defines the patterns.

Further Reading

• The series of books by Alexander, et al describe the core principles of pat-
terns and pattern languages. A Pattern Language (Alexander et al. 1977)
gives a pattern language for building towns and buildings. The Timeless Way
of Building (Alexander 1979) describes the principles behind patterns and
pattern languages. The Oregon Experiment (Alexander et al. 1975) gives a
concrete example of using a pattern language in a real situation. Some of
these books are a bit long, and Alexander’s prose is a bit tough to wade
through at times (with some examples of marginally correct grammar), but
the ideas the book expresses are excellent.

• Many of the patterns for software systems were workshopped at the Pattern
Languages of Programming conference. A good collection of the patterns
from these conferences appears in the Patterns Languages of Program Design
series (Coplien and Schmidt 1995; Vlissides et al. 1996; Martin et al. 1998;
Harrison et al. 2000).

• The Hillside group’s patterns page is a good starting point for all things
relating to software patterns, including information on the various patterns
conferences. The URL is http://www.hillside.net/patterns.

• For examples of patterns applied to software systems, Design Patterns
(Gamma et al. 1995) is the one book “everyone” has read. The Pattern-Ori-
ented Software Architecture series books are another example. These books
do not approach the richness of the Alexander books, but they provide a
concrete example.

• Brandon Goldfedder’s The Joy Of Patterns (Goldfedder 2002) is an excellent
introduction to using the design patterns.

• The Manager Pool: Patterns for Radical Leadership (Olson and Stimmel 2002), is
a collection of patterns on managing software organizations.
50 (SBCH03.fm) Patterns (3)

• The Patterns Almanac (Rising 2000) is one of the most comprehensive
indexes of the state of software patterns in publication.
Patterns (SBCH03.fm 6/14/02) 51

52 (SBCH03.fm) Patterns (3)

PART 1

The Patterns
(SBPart2Front.fm 6/14/02) 53

54 (SBPart2Front.fm) (3)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 4
Mainline
When you are developing a software application as part of a team effort you often
have to reconcile parallel development efforts. Your version control tool provides
branching and merging facilities. You can use branches to isolate parallel efforts, but
this can have a cost. This pattern shows you how to manage your codeline to mini-
mize the integration effort that branching and merging requires.

� � �� � �� � �� � �

How do you keep the number of currently active codelines to a manageable set,
and avoid growing the project's version tree too wide and too dense? How do you
minimize the overhead of merging?

Generically, a branch is a means to organize file versions and show their history.
(White 2000) More specifically, a branch is a configuration of a system that is derived
from, and developing independently of, the base configuration. For example, a
branch can consist of a snapshot of the system at release time, and all patches that
you apply to the release. A branch can also be used to keep a subset of files that,
when merged with the main system, produce a unique variant, such as a platform
specific version, or a customer variant.

Branching is a powerful mechanism for isolating yourself from change. You can
branch to isolate changes for a release, for a platform, for subsystem, for a devel-
oper’s work; just about any time that you have work that goes off in a different direc-
tion. Whenever branches need to be integrated together, you need to merge the
changes. For example, when you must integrate a bug fix for the last release into the
current release. This isolation from change can have a cost. Even with good tools,
merging can be difficult, since it is entirely possible to make two changes that conflict
with each other (because of intent of the change if for no other reason), and you have
no way of resolving the conflict without knowing the intention of the authors. You
may have to make the change in both codelines manually. Any work that you
thought that you would save by branching can be more than compensated for in the
effort of a messy merge. Figure 4-1 illustrates this.

Separate codelines seem like a natural way to organize work in some cases. As your
product evolves, you may want to create more codelines to isolate and organize
changes. This is helpful, because it is easy to allow the codelines to evolve in their
own way. More codelines may mean more merging though, and more merging
means more synchronization effort, and the practical costs of the merge may out-
weigh the improved apparent organization.

Figure 4-1 . A Merge Can be Messy

Task
B1

Task
A1

Task
C1

Merge

/Project A

/Project B

/Project C
56 (SBCH04.fm) Mainline (4)

Some codelines are naturally derivative. It may be natural to think of each release
using the prior release as a starting point, following a promotion model. This will
give you a staircase codeline structure that can make it hard to determine where code
originated, and making an urgent fix to a release without interrupting new develop-
ment can be difficult with this structure. Figure 4-2 show this case. But with this
structure the policy of the codeline will change from being active to development,
and it requires developers to relocate work in progress to another codeline (Wingerd
and Seiwald 1998)

Another use of a branch is to allow a subset of the team to work on a change with far
reaching consequences. If they work on the branch, then they do not have to worry
about breaking existing code, or about problems other people’s changes can cause.
The branch isolates each group from changes that another makes. This works well
when you integrate back with the main body of code as quickly as possible, but if you
branch simply to defer integration the merge will be difficult, and you are just put-
ting off the inevitable.

Some argue for resisting the temptation to ever delay integration. Extreme Program-
ming advocates continuous integration because the effort of integration is exponen-
tially proportional to the amount of time between integrations (Fowler and Foemmel
2001), but sometimes parts of the codebase really are evolving in different directions,
and independent lines of evolution make sense.

If you want to branch, creating a branch can be a simple matter with the right tools,
but a branch is a fairly heavyweight thing. A branch of a project can be all of the com-
ponents for a release, and some of their dependents. So creating that branch has seri-
ous consequences if you need to integrate any changes from the original codeline into
it.

Figure 4-2 .Staircase Branching (or a Cascade)

/Main

/Relase 1

/Release 2

Release
2 work

Release
3 work

Release
1 work
Mainline (SBCH04.fm 6/14/02) 57

If you don’t branch, you lose the isolation that a branch gives you and your code all
needs to work together for anyone to get anything done. But, in most cases, your
code needs to work together in the end anyway. You need to balance the transient
freedom that branching gives you with the costs that you will encounter when you
need to re-synchronize.

You want to maximize the concurrency on your codelines while minimizing prob-
lems that deferred integration can cause.

Fear of Branching

People seem to be both fascinated by and fearful of branching. This ambiguity
is often caused by people not understanding their tools, and not understanding
their motivations for branching.

Branching (like most everything else) when done without good sound reason-
ing can hinder more than help. It is admittedly very easy to go branch-happy or
branch-crazy and use them too much. Branching should definitely be done in
moderation and with careful consideration. Going great lengths to avoid it how-
ever can often cause you more work in the end. So just as one should not
branch “on whim” without good reason, also take care not to go to the other
extreme of taking a lot of measures to avoid it based more on fear and the lack
of information.

 A great deal can also depend on the version control tool you use. Branching in
a tool like VSS is very limited in capability and somewhat unwieldy, and not
often recommended. Branching in CVS is much easier, but still not as good
as with tools that have much better logical and visual support for branching or
built-in intelligence to know which “paths” have already been merged

I have worked at places where someone discovers the branching facilities of a
tool and then starts using them without thinking out a strategy. The branches
create isolation but they sometimes isolate too much. The product reached a
point where they have a ‘staircase’ branching structure: each branch has other
branches off of it, and each of these branches is fairly long-lived and active.
The when the time comes for a major change that affects many of the
“branches”, the only good way to integrate the change is to manually add it to
all of the branches. When people discuss situations like this with me, they
quickly talk about how bad their tool is, since it won’t support their structure.
They rarely discuss about whether the structure actually made sense.
58 (SBCH04.fm) Mainline (4)

The reality often is that structure does not fit the business model of the com-
pany. A simpler branching model would have worked better in practice. Also,
the extent to which the company is willing to invest in tool support to allow
complicated merges also indicates how complicated of a branching structure
that they need. I’ve found that if you can’t make a case for a tool that supports
a complicated branch and merge structure, then management doesn’t really
understand why there should be such a structure.

At the other end of the spectrum are the people who decide to never branch.
Often they had been in a situation where the branching and merging was hell-
ish, and they avoid branches at all costs. This is, of course, short sighted,
since there are many valid reasons to branch a codeline. Like any tool, you
should understand how to use it, and how it can hurt you if you use it badly.

Simplify your Branching Model

When you are developing a single product release, develop off of a mainline. A
mainline is a “home codeline” that you do all of your development on, except in
special circumstances. When you do branch, consider your overall strategy before
you create the branch. When in doubt, go for a simpler model.

The reason for a mainline is as “a central codeline to act as a basis for subbranches
and their resultant merges” (Vance 1998).The mainline for a project will generally
start with the codebase for the previous release or version. Of course, if you are doing
new development, you start off with only one codeline, which is your mainline by
definition.

Doing mainline development does not mean “do not branch.” It means that all ongo-
ing development activities end up on a single codeline at some time.

Don’t start a branch unless you have a clear reason for it and the effort of a later
merge is greatly outweighed by the independence of the branch. Favor branches that
won’t have to be merged often, for example release lines. Branching can be a power-
ful tool, but like any tool, it should be treated with respect and understanding. Have
the majority of your development work off of a mainline. Use good build and devel-
opment practice to ensure that what gets checked into the mainline is usable, but real-
ize that the tip of the mainline is a work in progress and will not always be release
quality.
Mainline (SBCH04.fm 6/14/02) 59

Do the majority of your work on one codeline. The mainline need not be the root of
the version control system. It can be a branch that you are starting a new effort on.
The key idea is that all the work done on a release will be integrated quickly into one
codeline.

You need to ensure that the code in the mainline always works in a reasonable fash-
ion. It is to your advantage to maintain a continually integrated system anyway,
because “big-bang” integration costs almost always exceed expectations.

When the time comes to create a codeline for a new major release, instead of branch-
ing the new release-line off of the previous release-line, merge the previous release-
line back to the mainline branch and branch off the new release-line from there. Have
a shallow branching model such as in Figure 4-3.

Mainline development offers the following advantages:

• Having a mainline reduces merging and synchronization effort by requiring
fewer transitive change propagations.

• A mainline provides closure by bringing changes back to the overall work-
stream instead of leaving them splintered and fragmented

There are still reasons to branch. You will want to branch towards the end of a release
cycle to isolate a stable version of the codebase at that revision level. This will allow
you to do bug fixes on the that branch without introducing new features and other
work in progress to the already released codeline.

Limit branching to special situations, including:

Figure 4-3 .Mainline Development

1.0

Release
1

2.0

Release 1.1

Release
2

2.01.0

/Mainline
Release
1 Work

Release
1 Fixes

Release
2 Work

Release
3 Work

Release
2 Fixes
60 (SBCH04.fm) Mainline (4)

• Customer releases. This is to allow bug fix development on the release code
without exposing the customer to new feature work in progress on the
mainline. You may want to migrate bug fixes between the release branches
and the mainline, but depending on the nature of the work on each line, this
too may be limited.

• Long lived parallel efforts that multiple people will be working on. If this
work will make the codeline more unstable that usual, create a TASK BRANCH
(19). This works best when the mainline will only have small changes done
on it.

• Integration. When you create customer release lines instead of doing a code
freeze, create an integration branch on which your developers will do all
their work. This will allow progress to continue on the mainline. Bug fixes
in the integration line need to be integrated into the mainline, but this
should not be too difficult as the release should be close to what is currently
active.

Some situations will still require a branch. But you will generally want to think hard
before branching; ask yourself if the work really requires a branch. Branches have
many uses, but you want to avoid long-lived branches that must be merged later.

To do mainline development:

• Create a codeline (/main) using the current active code base as a starting
point

• Check in all changes to this codeline.
• Follow appropriate per-check in test procedures to keep this mainline use-

ful and correct.
• Mainline development can greatly simplify you development process.

Wingerd and Seiwald report that “90% of SCM ‘process’ is enforcing code-
line promotion to compensate for the lack of a mainline (Wingerd and Sei-
wald 1998).”

Unresolved Issues

One you decide to have a mainline, you need figure out how to keep the mainline
usable when many people are working on it. ACTIVE DEVELOPMENT LINE (5) describes
how to manage this.
Mainline (SBCH04.fm 6/14/02) 61

Further Reading

• SCM Tool manuals, such as those for CVS and Clearcase describe how to
manage mainline and release line development. You can download and find
out about CVS at http://www.csvhome.com/

• Open Source Development with CVS (Fogel and Bar 2001)describes how to use
the popular open source tool CVS.

• Software Release Methodology by Michael Bays (Bays 1999) has a good discus-
sion about branching strategies and issues around merging.

• Software Configuration Management Strategies and Rational Clearcase (White
2000)Brian White discusses branching strategies. While is book is focused
on ClearCase, there is good generic information in the book.
62 (SBCH04.fm) Mainline (4)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 5
Active Development Line
You have an evolving codeline that has code intended to work with a future product
release.You are doing most of your work on a MAINLINE (4). When you are working in
dynamic development environment many people are changing the code. Team mem-
bers are working towards making the system better, but any change can break the
system, and changes can conflict. This pattern helps you to balance stability and
progress in an active development effort.

� � �� � �� � �� � �

How do you keep a rapidly evolving codeline stable enough to be useful?

You develop software in teams because you want there to be concurrent work. The
more people you have working on a codebase, the more that you need communica-
tion among team members. You also have more potential for conflicting changes.

For the team as a whole to make progress you need synchronization points where the
work comes together. As in any concurrent system, having a synchronization point
means that there is a possibility for deadlock or blocking if we don’t manage the
coordination correctly. Deadlock can happen when 2 people have mutual dependen-
cies, and a check in before a test finishes can mean that the test would fail the next
time we ran it. Blocking can happen when the pre-checkin process takes too long and
someone else needs their changes to proceed.

If you think of software development as a set of concurrent processes, we have to
synchronize whenever we check a change into the codeline in the source control sys-
tem. When someone checks in a change into the codeline he can cause delays to the
team as a whole if the change breaks someone else’s work. Even if you tested the
change with what you thought was the latest code, it could still be incompatible with
the change that got checked in moments before. But if we put too much effort into
testing for changes, making sure that a change works with every change that got
checked in while we were running the last set of tests, we may not be able to check in
our changes in a reasonable amount of time. That can cause delays too.

Working from a highly tested stable line isn’t always an option when you are devel-
oping new features. You want to use your version control system to exchange work in
progress for integration, and there may be many features that you don’t have integra-
tion tests for yet because they are so new.

You want to be able to get current code from the source control system and have a
reasonable expectation that it will work. You want the codeline to be stable so that it
does not interfere with people’s work. You can require that people perform simple
procedures before submitting code to the codeline, such as a preliminary build, and
some level of testing. These tests take time though, and the delay between check ins
may work against the some of the projects greater goals. A broken codeline slows
down everyone who works off of it, but the time it takes to test exhaustively slows
down people as well, and in some cases can provide a false sense of security, since
you can never fully test a system that is in flux. Even if you do test your code before
checkin, concurrency issues mean that two changes, tested individually, will result in
the second one breaking the system.And the more exhaustive — and longer running
64 (SBCH05.fm) Active Development Line (5)

— your tests are, the more likely it is that there may be a non-compatible change sub-
mitted.

You can prevent changes from being checked into the codeline while you are testing
by using semaphores, but then only one person can test and check in changes at a
time, which can also slow progress. Figure 5-2 shows a very stable, but very slowly
evolving codeline.

You can also make changes to your codeline structure to keep parts of the code tree
stable, creating branches at various points, but that adds complexity, and requires a
merge.

You can go to the other extreme, and make your codeline a free-for all. Figure 5-3
shows a quickly evolving but unusable codeline.

You can also change the module architecture of the system to reduce the likelihood of
conflicting change, but, even then you may still have two people changing the code
in a way that breaks something.

Figure 5-1 .Long Running Tests have Mixed Value.

Figure 5-2 .A Stable, but Dead, Codeline.

Figure 5-3 .A Very Active, but very Useless Codeline

Your test would
fail now

Your Test Passes

You Edit You Test

They Edit

Good Test Good Test Good Test

Poor
Test

Poor
Test

Good
Test

Good
Test
Active Development Line (SBCH05.fm 6/14/02) 65

Aiming for perfection is likely to fail in all but the most static environments. You can
achieve stability on a given codeline, but with process and synchronization overhead,
increased merging, and more complicated maintenance and administration. This is
not always worthwhile.You want a balance: an active codeline that will more likely
than not, be usable most of the time.

Testing Treadmill

I have worked at a number of startup companies and there is a recurring
theme that goes like this: Initially, there are only a few people working on the
product. They understand what they are doing very well, and even when they
step on each other’s work, they recover quickly. Then the company grows, and
the code in version control is hardly every consistent. The tip of the mainline
always breaks. In frustration, someone sets up test suites that people should
run before doing a check in to the source control system. The first cut at this
test suite is every test that they can think of. The test suite grows and soon it
takes an hour to run the pre-checkin tests. People compensate by checking
code in less often, causing pain when there are merges or other integration
issues. Productivity goes down as well. Someone suggests shortening the test
suites, but they are met with resistance justified by cries of “We are doing this
to ensure quality.” Someone else comments that “the pain is worth it, consider-
ing what we went through last year when we had no tests.

But, once we reached a basic level of stability, the emphasis on exhaustive
testing lead to diminishing returns as progress as a whole was reduced. This
gets worse when the tests are not exhaustive, but simply exhausting to the
developers who run them.

Define your goals

Institute policies that are effective in making your main development line stable
enough for the work it needs to do. Do not aim for a perfect active development
line, but rather for a mainline that is usable and active enough for your needs.

An active development line will have frequent changes, some well tested checkpoints
that are guaranteed to be “good,” and other points in the codeline are likely to be
66 (SBCH05.fm) Active Development Line (5)

good enough for someone to do development on the tip of the line. Figure 5-4 shows
what this looks like.

The hard part of this solution is figuring out how “good” your codeline really needs
to be. You need to go through a process that is similar to doing a requirements analy-
sis for building software system. Your clients want perfection and completeness, and
they want it quickly and cheaply. These goals are, in reality, unattainable. Do an anal-
ysis along the following lines:

• Who uses the codeline?
• What is the release cycle?
• What test mechanisms do we have in place?
• How much is the system evolving?
• What are the real costs will be for a cycle where things are broken?

For example, if the codeline is being used by other teams that are also doing active
development, some instability is appropriate and the emphasis should be on speed. If
this is the beginning of the new development, or if the team is adding many new fea-
tures, you expect more instability. If this codeline is basically stable, and being used
as a standard component, more validation is appropriate. Right before you want to
branch or freeze for a release, you want more stability, so you, you want to test more.

Understand your project’s rhythm. Kane and Dikel define rhythm as “the recurring,
predictable exchange of work products within an architecture group and across cus-
tomers and suppliers”(Dikel et al. 2001) A good project rhythm is especially impor-
tant for architecture centric development, but any project that has concurrent work
with dependencies needs a good rhythm. The source control structure can influence
how the rhythm is executed, and culture helps define what rhythm you need.

If you have good unit and regression tests, run either by developers or as part of the
system build post checkin, errors will not persist as long, so emphasize speed on
checkin. If you do not have a good testing infrastructure, be more careful until you
develop it. If you want to add functionality, emphasize speed.

If a client needs a good deal of stability, they should only used NAMED STABLE BASES
(20) of the components, this will allow them to avoid “cutting edge” work in
progress. Figure 5-5 shows how these baselines are identified and labeled when they

Figure 5-4 .An Active, Alive, Codeline

Poor
Test

Good
Test

Good
Test

Good
Test
Active Development Line (SBCH05.fm 6/14/02) 67

pass tests. But these clients should then be treated more like external clients than
members of the active development team.

Don’t be too conservative. People can work with any system as long as they under-
stand the trade-offs and the needs. You don’t want to make the checking process too
difficult. If you have a pre-checkin process that takes a long time you run the risk of
developers doing larger grained, and less frequent checkins which will slow feature
progress. Less frequent checkins increase the possibility of a conflict during testing,
and make it harder to back out of a problematic change.

Establish a criteria for how much to test the code before checkins: “The standard
needs to set a quality level that is strict enough to keep showstopper defects out of
the daily build, but lenient enough to disregard trivial defects (because undue atten-
tion to trivial defects can paralyze progress).” (McConnell 1996). Martin Fowler sug-
gests for the purposes of continuous integration (Fowler and Foemmel 2001):a
selected suite of tests runs against the system successfully. The more exhaustive the
tests, the longer the pre-check-in time. You need to determine how much stability is
really necessary for your purposes.

Remember that there is a fundamental difference between code that close to release
and code that is being actively changed. If you need a stable codeline, perhaps what
you want isn’t the active development line, but rather a fully QA’d RELEASE LINE (17).
There are significant benefits in the form of catching potential problems early in
developing with an ACTIVE DEVELOPMENT LINE. You can also push off your more exhaus-
tive testing to a batch process that creates your NAMED STABLE BASES (20).

To prevent total chaos on the mainline set up each developer with a PRIVATE WORK-
SPACE (6) where they can do a PRIVATE SYSTEM BUILD (8), UNIT TEST (14) and SMOKE TEST
(13).

Have an integration workspace where snapshots of the code are built periodically an
subjected to more exhaustive tests.

Figure 5-5 .Labeling Named Stable Bases

Good
Test

Good
Test

Good
Test

Poor
Test

Good
Test

Good
Build

Good
Build
68 (SBCH05.fm) Active Development Line (5)

Any SCM tool that supports “triggers” or automatic events that happen after a
change is submitted will help automate the process of verifying that you are meeting
the quality metric. You can then set up the system to run a build or a set of tests after
a change is submitted. You can also set up the system to run less often.

As Jim Highsmith (Highsmith 2002) writes, “Change is expensive. no question about
it. But consider the alternative — stagnation.”

Unresolved Issues

Once you have established that a ‘good enough’ codeline is desirable, you need to
identify the codeline that will be like this. CODELINE POLICY (12) will establish which
lines follow this form, and what the checkin/commit process is for these (and other)
codelines.

An individual developer still needs isolation to keep the Active Development Line
alive. He can do this by working in a PRIVATE WORKSPACE (6).

When the need for stability gets close, some work will need to be broken off to a
RELEASE-PREP CODE LINE (18).

Some long lived tasks may need more stability that an active development line can
provide, even though you realize that there may be an integration cost later. For
these, use a TASK BRANCH (19). Doing this also insulates the primary codeline from high
risk changes.

Further Reading

• One reason people resist applying this pattern is that they think that their
problem is that code is not perfect, when in fact the problem is that it is too
hard to change and evolve the code. A great book about getting to the core
of the “real” problem is Are Your Lights On? (Gause and Weinberg 1990).

• Agile Software Development Ecosystems (Highsmith 2002) discusses the reality
of continuos change in most projects.
Active Development Line (SBCH05.fm 6/14/02) 69

70 (SBCH05.fm) Active Development Line (5)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 6
Private Workspace
In an ACTIVE DEVELOPMENT LINE (5) you and other developers make frequent changes to
the code base, both to the modules that you are working on and to modules that you
depend on. You want to be sure that you are working with the latest code, but since
people don’t deal well with uncontrolled change, you want to be control when you
start working with other developer’s changes.This pattern describes how you can
reconcile the tension between always developing with a current code base, and the
reality that people cannot work effectively when their environment is in constant
flux.

� � �� � �� � �� � �

How do you do keep current with a continuously changing codeline, and also
make progress without being distracted by your environment changing out from
under you?

 Developers need a place where they can work on their code isolated from outside
changes while they are finishing a task

When a team develops software, people work in parallel, with the hope that the team
gets work done more quickly than any individual. Each individual makes changes in
parallel with the other team members. You now have the problem of managing and
integrating these parallel streams of change. Writing and debugging code, on the
other hand, is a fairly linear activity. Since in team development there are concurrent
changes happening to the codeline while you are working on your specific changes
there is a tension between keeping up to date with the current state of the codeline,
and the human tendency to work best in an environment of minimal change.
Changes that distract you from your primary purpose interrupt your flow. DeMarco
and Lister define “flow” as “a condition of deep, nearly meditative involve-
ment.”(DeMarco and Lister 1987). In PeopleWare, the authors discuss flow in terms of
noise and task related interruptions, but integrating a change that is not related to the
task at hand can have a similar effect.

Developing software in a team environment involves the following steps:

• Writing and testing your code changes
• Integrating your code with the work that other people were doing.

There are two extreme approaches to managing parallel change, literal continuous
integration, and delayed integration.

You can integrate every change a team member makes as soon as they make it. This is
the clearest way to know if your changes work with the current state of the codeline.
The down side of this “continuous integration” into your workspace approach is that
you may spend much of your time integrating; handling changes tangential to your
task. Frequent integration helps you isolate when a flaw appeared. Integrating too
many changes at once can make it harder to isolate where the flaw is, as it can be in
72 (SBCH06.fm) Private Workspace (6)

one of the many changes that have happened since you integrated. Figure 6-1 shows
this.

Figure 6-1 .Combining Changes at Once.

Workspace

Change 1 Change 2 Change 3
Private Workspace (SBCH06.fm 6/14/02) 73

Even when you do “continuous integration,” as when you are doing Extreme Pro-
gramming, you really integrate in discrete steps, as when a day’s work is complete.
Figure 6-2 shows this case.

You can integrate at the last possible moment. This makes it simplest for you, the
developer while you are working, but it means that you may have a large number of
outside integration issues to deal with, meaning that it will take longer to integrate at
the end.

You can “help” developers keep up to date by having them work out of a shared
source/release area, only keeping local copies of the components that they are modi-
fying. But you really don’t want to have things change unexpectedly. Also, a change
in one of the other components can have an effect on your work. If you are coding in
a language like C++, a change in a header can cause a compilation problem. A change

Figure 6-2 .Integrating each change as it happens

Workspace

Change 1 Change 2 Change 3
74 (SBCH06.fm) Private Workspace (6)

in source can cause a behavior problem. Even with a highly modular architecture,
components will interact, making it hard to get consistent results across a change.

And there are also times that you are working on things other than the latest code
base. You must interrupt your work on the current release to work on the code at an
earlier point in time. Or you many need to experiment with a new feature. Sometimes
you can’t be up-to-date and still do your work.

You can also avoid the problems of continuous updates by taking a snapshot of the
entire system, and performing all of your coding tasks against the snapshot. This
overly conservative approach can cause problems when you get behind the leading
edge of changes. You many find yourself introducing problems into the global envi-
ronment.

You need a way to control the rate of change in the code that you are developing with
without falling too far out of step with the evolving codeline.

Figure 6-3 .Sharing Some Components between Workspaces.

Workspace 1 Workspace 2
Private Workspace (SBCH06.fm 6/14/02) 75

 A Simple Plan

To some, this sounds like an easy to solve problem with an obvious solution.
When I was interviewing for a job at a startup company 6 years into my career
I discovered that some obvious solutions are easy to miss if you are not think-
ing about the context that you have. The company has fully bought into the
idea of nightly builds.The problem was that each developer worked out of a
shared product area, so after a night of working on a problem, you could come
in the next day to find your development environment had changed dramati-
cally, and then have to spend half the day simply getting to where you were the
night before.

This illustrates one problem with blindly following a “good idea” without think-
ing through the reasons for using them.

Isolate Your Work to Control Change

Do your work in a Private Workspace where you control the versions of code and
components that you are working on. You will have total control over when and
how your environment changes.

Every team member should be able to set up a workspace where they have a consis-
tent version of the software. A concise definition of a workspace is “a copy of all the
‘right’ versions of all the ‘right’ files in the ‘right’ directories.”(White 2000) A work-
space is also a place “where an item evolves through many temporary and inconsis-
tent states until is checked into the library.” (Whitgift 1991). You should have total
control of when parts of the system change. You control when changes get integrated
into your workspace. The most common situation is when you are working on the tip
of the codeline along with other team members, but when you are working on a ver-
sion that is not the latest, you can recreate any configuration necessary.

A Private Workspace comprises:

• Source code that you are editing.
• Any locally built components.
• Third party derived objects that you cannot or do not wish to build
76 (SBCH06.fm) Private Workspace (6)

• Built objects for all the code in the system. You can build these yourself,
have references to a shared repository (with the correct version), or copies
of built objects.

• Configuration and data that you need to run and test the system.
• Build scripts to build the system in your workspace.
• Information identifying the versions of all of the components in the system.

A Private workspace should not contain:

• Private versions of system-wide scripts that enforce policy. These should be
in a shared binary directory so that all users get the latest functionality

• Components that are in version control, but that you copied from some-
where else. You should be able to consistently reproduce the state of your
workspace when you were performing a task, by referencing a version
identifier for every component in the workspace.

• Any tools (compilers, etc.) that must be the same across all versions of the
product. If different versions of the product require different versions of
tools, the build scripts can address this by selecting the appropriate tool ver-
sions for a configuration.

In addition, a Private Workspace can include tools that facilitate your work, as long
as the tools are compatible with the work style of the team.

To do your coding for mainline development follow a procedure similar to this:

• Get up to date. Update the source tree from the codeline that you are work-
ing on so that you are working with the current code and build, or repopu-
late the workspace from the latest system build. If you are working on an
different branch or baseline, create a new Private Workspace from that
branch.

• Make your changes. Edit the components that you need to change.
• Do a PRIVATE SYSTEM BUILD (8) to update any derived objects.
• Test your change with a UNIT TEST (14).
• Update the workspace to the latest versions of all other components by get-

ting the latest versions of all components that you have not changed.
• Rebuild. Run a SMOKE TEST (13) to make sure that you have not broken any-

thing.

If your system is small enough, you can simply get source and any binary objects for
the correct configuration of all of the product components and build the entire sys-
tem. You might also consider getting the latest code from the MAINLINE (4) and building
the entire system if it does not take too long. This will ensure that the system that you
Private Workspace (SBCH06.fm 6/14/02) 77

are running matches the source code. With a good incremental build environment,
doing this should work rather well, allowing for, perhaps, the one time cost of the
whole system build.

In more complex systems, or where you are especially intolerant of problems, popu-
late the environment by getting the source and object files from a know good build
(NAMED STABLE BASES (20)). You can also get all of the source files from the MAINLINE (4),
since this will probably simplify debugging. Get whatever external components you
need from the THIRD PARTY CODELINE (10). All of these components should be of the cor-
rect configuration (version, label, etc.) for the system that you are working on. Get
private versions of all of the source components that you will be changing.

If you are working on a multiple tasks, you can have multiple workspaces, each with
their own configurations. For example, you can have a ‘release 1.1’ workspace to fix
problems in the old release, while doing new development in a ‘release 2’ workspace.
These can be separate and complete workspaces. It is not work the effort, in most
cases, to save space by factoring out common components. (For example, if compo-
nent X has not changed between release 1.1 and release 2, it is worthwhile to simply
have 2 copies of this component. If X changes in release 2 later on it will be easy to
update the “release 2” workspace without affecting the release 1 workspace.

Be sure that any tests/scripts/tools/etc. use the correct execution paths so that they
run with the correct workspace version, and not a component from another work-
space, or an installed version of the product. One way to do this is to deploy all local
components in one binary directory and put the current directory in the path.
Another way is to start up tests in a script that sets the environment.

Some component environments, such as COM, define certain items on a machine
wide basis, so be sure to have a mechanisms to switch between workspaces by un-
registering and registering the appropriate servers.

To be sure that you have built all dependencies, do a PRIVATE SYSTEM BUILD (8). Check
that your changes integrate successfully with the work others have done in the mean-
time by getting the latest code from the MAINLINE (4) (exclusive of changes you have
made). If you are working on multiple tasks at one time, your workspace should
have many workspaces.

One risk with a PRIVATE WORKSPACE (6) is that developers will work with old “known”
code too long, and they will be working with outdated code. You can protect yourself
from this by doing periodic Private System Builds and making sure that changes do
not break the build or fail the SMOKE TEST (13). (The sidebar “Update Your Workspace
to Keep Current”discusses the Workspace Update in more detail.)
78 (SBCH06.fm) Private Workspace (6)

The easiest way to avoid getting out of date is to do fine grained tasks, checking in
your changes after each one, and also updating your workspace before starting a new
task. Some people find it useful to establish a discipline of creating a brand new
workspace periodically to avoid problems that stray files might cause, and prevent-
ing the “works for me” syndrome. This is not ideal, but is an adaptation to the reality
that some version control tools do an imperfect job of updating, particularly when
you move files within the system.

Having a PRIVATE WORKSPACE (6) does take more space than working with shared
source, but the simplicity that it adds to your work is worth it.

An automated build process should also have its own workspace. Set up this work-
space would always get all the updates, if you are doing a “latest” build.

Good tool support makes managing a combination of shared and private compo-
nents easy, but you can get quite far by using basic version control tools and/or
scripts. For example, if your system can be built rather quickly, but uses some third
party components, your checkout process can populate your workspace from version
control with all the source from your system, and the built objects for the third party
components. After you build our product code you will have a complete system.

A SMOKE TEST (13) allows you to check that your changes don’t break the functionality
of the system in a major way. A well designed smoke test will help you to minimize
the amount of code that you need to keep in your workspace and rebuild, since the
smoke tests should test the features that clients of your module expect.

Some work touches large parts of the codebase, and takes a long time to finish. In
these cases a TASK BRANCH (19) may be the more appropriate approach.

Depending on your specific goal, there are a number of variations to this pattern,
including, Developer workspace, Integration Workspace, and a Task workspace, in
which case a developer has a number of workspace in his area concurrently.

 There are variants of a workspace that are used for specific purposes. For example,
an integration workspace, which is where changes are combined with the current state
of the system, built and tested. This can also be called a build workspace, and may
exist on the integration or build machine.
Private Workspace (SBCH06.fm 6/14/02) 79

 Update Your Workspace to Keep Current

After a workspace has been populated, the codeline may continue to evolve. If
the work in your workspace is isolated for too long, the versions in the work-
space can become outdated. A workspace update operation will “refresh” the
outdated versions in your workspace, replacing them with the versions from
the latest stable state of the codeline. If any of the files you changed are also
among the set of “newer” files from the codeline, then merge conflicts may
occur and will need to be reconciled.

You should do a Workspace Update before you merge your changes back to
the codeline during a TASK LEVEL COMMIT (11). You will need to rebuild using a
PRIVATE SYSTEM BUILD (8) or at least recompile immediately after the update
to quickly find and fix any inconsistencies introduced by the new changes. If
desired, immediately prior to updating your workspace, checkpoint it using a
label or PRIVATE VERSIONS (16) to ensure you can rollback to its previous state.

 You may also update your workspace at known stable points, as well as right
before you are about to check out a new set of files, to ensure that your work-
space remains stable without growing “stale”. This allows you to find out early
on if any recently committed changes conflict with any changes in your work-
space. You may then reconcile those changes in your private workspace at
incremental intervals, instead of waiting until the end to do all of them at once.

Unresolved Issues.

Once you have stability for yourself, you still need to prevent introducing errors into
the system when you check in your changes. PRIVATE SYSTEM BUILD (8) will let you check
that your system does not break the build, and will also allow you to do an incremen-
tal build for the parts of your system when you do an incremental update from ver-
sion control for other components.

You will need to populate your workspace from a REPOSITORY (7) containing all of the
source and related components. Externally provided components will need to come
from a THIRD PARTY CODELINE (10).

Once you are done with your local work, it needs to get incorporated into the rest of
the system in a INTEGRATION BUILD (9).
80 (SBCH06.fm) Private Workspace (6)

Further Reading

• Brian White in Software Configuration Management Strategies and Rational
Clearcase: A Practical Introduction (White 2000) has a good description of the
various types of workspaces that ClearCase supports (ClearCase calls them
“views”). He says that “one of the essential functions of an SCM tools to
establish and manage the developers’ working environment, often referred
to as a “workspace” or a “sandbox.”

• Private workspaces are a common practice in successful development orga-
nizations; so common they are often not described as such. Managing
change, consistent build practices, and other essential components of Pri-
vate Workspaces are all part of the practices that classic books like Code
Complete (McConnell 1993) and Rapid Development (McConnell 1996),
among others, describe.
Private Workspace (SBCH06.fm 6/14/02) 81

82 (SBCH06.fm) Private Workspace (6)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 7
Repository
To create a PRIVATE WORKSPACE (6) or to run a reliable INTEGRATION BUILD (9) you need
the right components. This pattern shows you how to build a workspace easily from
the necessary parts.

� � �� � �� � �� � �

How do you build get the right versions of the right components into a new work-
space?

Any software development activity that you perform starts off with a workspace
where you have the components necessary to build, run and test your software. You
need the right versions of everything that comprises the system so that you can build,

run, and test your software so that you can accurately diagnose problems before you
check in changes.

You want to easily get the elements of your workspace so that you can reliably create
an environment that allows you to do your work using the right versions of the soft-
ware, whether you are working with the current active codeline, or with an earlier
version of the code base.

As Figure 7-1 shows, workspace consists of more that just code. Some of the things
that you need to build and test a software some of the things that you need include:

• The source code that you are working with.
• Components that you are not working with, either as source, or library files.
• Third party components, such as jar files, libraries, dlls, etc. - depending on

your language and platform.
• Configuration files
• Data files to initialize your application
• Build scripts and build environment settings so that you can get a consistent

build
• Install scripts for some components

Figure 7-1 .A Workspace is created from many things.

Workspace
84 (SBCH07.fm) Repository (7)

Some of these elements have natural origins. You could get source code from your
version control system, you could copy install scripts for some components, and
third party built components from a development server. You can get other things
that are not in source control from a server. Multiple locations for various resources
add a lot of overhead to tasks for already busy software developers. You spend most
of your coding time using tools such as an IDE, a compiler, your version control sys-
tem, and copying files from multiple source points leaves opportunity for error.

If you get tired of performing many manual operations to update your workspace,
you may decide to write your own tool to keep your self in synch, and even share the
tool with the rest of the team. While developing such tools will save you time, you
still run the risk of having the tool get out of synch with any new locations or policies,
and you may incur a maintenance burden for the tool that distracts from your work.

You need to be sure that are associating the right versions of each element. For exam-
ple, you might switch versions of a third party library in the middle of a product
release cycle. You can keep people up to date about changes by communication. You
can tell them to use a new version of the database API classes, and they may remem-
ber to update at the right time. It is difficult, however, for people to reliably know
keep track of these details on their own. Someone could be in the middle of a task
when they receive an e-mail about a change to a third party component, and forget to
update their workspace after a task. It is difficult to remember what configurations
went together for an earlier release.

A manual update process takes time. And if you missed the update notice, you may
have a number of locations to check. This can take a lot of time, especially if the com-
ponents are in different places.

Another issues is going back to the correct configuration at a point in time. You can
maintain a list of configuration components, and have people refer to it when recreat-
ing a test environment, but that is error prone.

You keep your source code in a version control system, and adding more places for
people to look for things adds to the complexity of creating a new workspace. If it is
too hard to create a workspace, you may feel a natural reluctance to keep up to date,
or to create another workspace to work on another codeline.
Repository (SBCH07.fm 6/14/02) 85

So Many to Choose From

There have been many times when I wanted to test our product while working
from the tip of the active codeline, rather than from the latest install. The latest
install often lagged the codeline by a day or so, and I wanted to see if a recent
change that someone else made addressed a problem that I was having.

Because of the nature of the product, and structure of our organization, the
development environment only had a portion of the configuration data and
libraries from other groups kept up to date. There were nightly builds of these
components, but they were staged into the development area when someone
needed an update. So we could go days, or weeks, without realizing that
something had changed.

When I tried to test, there were many mismatches between the server and cli-
ent components. After 3 days, I discovered the problem and wrote some
scripts (with the help of our release team) to enable developers to get the lat-
est library files and configuration files from the source control tree.

How did this situation arise? In part because of lack of communication
between the release engineering team, and the various product teams. And in
part because of a desire to control change too much. It is admirable not to
accept changes in an unexpected manner, but if a library component has
changed months ago, it is already in the product. If the development team can-
not see a problem, then they are wasting the companies time when they leave
the QA team to find all of the integration issues.

The problems start when developers can’t reproduce bugs in their develop-
ment environment because they are (unknowingly) out of synch with the
released version. Or they are reluctant to work on the correct version of the
code base because it takes too long to set up.

These places are in better shape than if they had no version control system,
but they waste lots of developer time and energy.

One Stop Shopping

Have a single point of access, or a Repository, for your code and related artifacts.
Make creating a developer workspace as simple and as transparent as possible.
86 (SBCH07.fm) Repository (7)

Make the mechanism that you use to create a workspace simple and repeatable. You
should be able to create a workspace that contains artifacts from any identifiable revi-
sion of the product, including third party components and built artifacts such as
library files. The mechanism should also make it easy to determine if there is a new
version of an existing element, or a new component that you need when you are
working on the tip of a development. Figure 7-2 shows this.

There are many ways to implement this pattern, and the details depend on the fea-
tures of your version control tool, your build environment, and to a certain extent,
your team’s culture. The are three requirements on your implementation:

• It should be easy to use and repeatable. This is in the spirit of what Andy
Hunt and Dave Thomas refer to as “Ubiquitous Automation” in (Andy
Hunt and Thomas 2002a) and (Andy Hunt and Thomas 2002b).

• It should give you all the components that you need to create a PRIVATE
WORKSPACE (6) for working on a particular state of your project, including
build scripts and built objects.

• It should work for all versions of the project.

Some common implementations are using the version control system as a repository
for all artifacts, and using scripts in combination with the version control system.

Figure 7-2 .Populate Your Workspace from a Repository

Repository

Workspace
Repository (SBCH07.fm 6/14/02) 87

Since you have a version control system, a straightforward way of implementing this
pattern is to place all source files, configuration files, build scripts, and third party
components in it. Identify the set that is relevant to a particular version of product by
using labels or creating a branch with the source codeline, third party codeline, etc.
This makes it easy to create a new workspace. You issue the ‘get’ command and spec-
ify the version of the product that you want.You can now also identify when some-
thing changes. If a third party component changes, your version control system’s
‘update” command will get you a new version. If a component is the same as you
already have, it will not update it.

This way, the version control system mirrors the build environment, and the history
of changes in the build environment can also be tracked.

If the version control tree is not a direct mapping onto the build tree, and your ver-
sion control tool does not provide an easy way to perform the mapping, or there is
some reason to not keep every component in version control (some version control
systems do not handle binary files well, and there may be a need to keep library files

Figure 7-3 .Version Tree for a workspace

ThirdParty

Project1

Project2

Project1 src
Version 1

Comp1
Version 2

Comp1
Version 1

Project 1 src
version 2

Project2 src
Version 1

Project 2 src
version 2

/lib/src

/workspace

/project1 /project2

Repository Workspace
88 (SBCH07.fm) Repository (7)

elsewhere if they do not change frequently) use a script or a makefile that copies the
appropriate versions of the appropriate files to the appropriate places, depending on
the version that you want. This might be the easiest and best way to populate your
workspace with the result of a nightly build.

All of your configuration files, etc. can also be tied together. If a new database library
needs new configuration settings, you can give them the same label, or check them
into the tip of the version tree together.

Some tools that you can use to help you create this script are make and ANT. Both
have interfaces to common version control systems.

Unresolved Issues

Organize third party code using THIRD PARTY CODELINE (10).

Further Reading

• Tools such as make (http://www.gnu.org/software/make/make.html)
and ANT(http://jakarta.apache.org/ant/) are very helpful in automating
the process of keeping a workspace up-to-date with your repository.

• The book Java Tools for Extreme Programming: Mastering Open Source Tools
Including Ant, Junit, and Cactus. (Hightower and Lesiecki 2002) discusses
how to use some of these tools.
Repository (SBCH07.fm 6/14/02) 89

90 (SBCH07.fm) Repository (7)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 8
Private System Build
A PRIVATE WORKSPACE (6) allows you, as a developer, to insulate yourself from external
changes to your environment. But your changes need to work with the rest of the sys-
tem too. To verify this, you need to build the system in a consistent manner, including
building with your changes. This pattern explains how you can check to see if your
code will still be consistent with the latest published code base when you submit
your changes.

� � �� � �� � �� � �

How do you verify that your changes do not break the build or the system before
you check them in.

In a development team with liberal codeline policies changes happen very fast. You
change existing code, add new modules to the codeline, and perhaps change the
dependencies.

The only true test of whether changes are truly compatible is the centralized integra-
tion build. But checking in changes that are likely to break the build wastes time.
Other developers will have you suffer through mistakes that you could have fixed
quickly, and unless the system build turnaround is very short, it will be harder for
you to recall what the source of an error will be because you may have lost the con-
text in the meantime. Since the system build will incorporate other changes as well as
yours, as Figure 8-1 shows, it is the true test of whether your code integrates with the
current state of the work. But this also makes it harder to isolate the source of prob-
lems.

You may have times when your pre-check in build works just fine, but the nightly
build fails. Or your copy of the system that you get fresh from source control works
just fine, but the product install that is made from the nightly build does not work the
way that you expect. You could always start debugging from a product install, ana-
lyzing logs and other run time debugging facilities, but debugging from your devel-

Figure 8-1 .The Build integrates changes from everyone.

The Code Repository

Your Workspace

Your Changes

Other Changes
92 (SBCH08.fm) Private System Build (8)

opment environment gives you more information. Sometimes the problem in this
case is that the product build and install did not incorporate a new file or resource
that you added to source control. Having release engineering maintain a list of what
gets built and installed adds a sense of reliability and reproducibility to the build, but
if developers are the ones adding components to the version tree, and they don’t
have visibility or control over what gets on the list, then changing the build involves
an added layer of communication, which implies an additional chance for error.

Often organizations have very well established formal build procedures, but they
don’t scale down to the developers. Separate developer and release builds can make
things simpler for some developers, but it also means that significant problems can’t
be found until the system build, which can be as infrequent as daily. This wastes time
for anyone who needs a working codeline, and makes it harder to get product release
candidates to the testers.

To be able to do a reasonable test of the effect of the changes, you must be able to
build all parts of the system that your code has an effect on. This means building
components in your own workspace. You can work by patching your workspace
with your built objects, for example, by building only the components that you
changed, and altering the system PATH or CLASSPATH to use the new components
first. But software systems are complicated, and you may not see interactions that a
“normal” build and execution process will have. Maintaining two procedures in par-
allel is difficult and error prone.

The Two True Ways

I was at a small company a while ago we had a fairly comprehensive set of
build scripts and local build procedures. A developer could build the system
and run tests on the local version by simply typing a few simple commands.
This placed this company well ahead of organizations where there was no
easy way to reproduce the effects of the nightly build. There were a few differ-
ences between the developer process and the release process that caused us
grief, however.

We were using CVS which lets you define aliases for groups of directories,
called modules. When you check out the files for a workspace, you check out
one or more modules. Modules can depend on other modules, so checking out
a module called “all” for example, will get you the entire source tree easily. I
Private System Build (SBCH08.fm 6/14/02) 93

added a new directory to the CVS “all” module that all the developers used to
create the workspace. The “Create a new workspace” script and build worked
just fine.

The nightly build failed mysteriously. After much handwringing, and some mis-
communication, we discovered that the nightly build scripts didn’t use the “all”
module that the developers used, but it checked out each module one at a
time. No one, aside from the release engineer, knew about this, and there was
no semi-automatic mechanism to know that a change in a module required a
change in the build script. We fixed this build error by sending an email to the
release engineer, but that isn’t an approach that scales well.

At another places, the installer that release engineering generated from the
nightly build did not include the same versions of some components that
developers were using. Debugging why an installed version didn’t work, and
subsequently fixing it, led to a culture of blame, and development feeling that
since they had little control over the process of creating install kits, that solving
the problem was out of their hands. By viewing creating an install kit as a pro-
cess that was somewhat separate from building the software, getting a release
out the door got harder.

Think Globally by Building Locally

Before making a submission to source control, build the system using a Private
System Build that is similar to the nightly build.

The private system build should have the following attributes:

• Be like the INTEGRATION BUILD (9) and product builds as much as possible,
though some details that are related to release and packaging can be omit-
ted. It should at least use the same compiler, versions of external compo-
nents, and directory structure.

• Include all dependencies.
• Include all of the components that are dependent on the change. (For exam-

ple, various application executables.)
94 (SBCH08.fm) Private System Build (8)

The architecture will help you determine what a sufficient set of components to build
is. An architecture that exhibits good encapsulation will make it easier to do this
build with confidence. Figure 8-2 illustrates what goes into a build.

The build should not differ significantly from the nightly build. Wingerd and Seiwald
suggest that “developers, test engineers, and release engineers should all use the
same build tools,” to avoid wasting time because you are not able to reproduce a
problem (Wingerd and Seiwald 1998). In The Pragmatic Programmer: From Journeyman
to Master (Andy Hunt and Thomas 2002b) Andy Hunt and Dave Thomas say “If you
do nothing else, make sure that every developer on a project compiles his or her soft-
ware the same way, using the same tools, against the same set of dependencies. Make
sure that the compilation process is automated.”

If it must, it can differ from the product build in the following ways:

Figure 8-2 .Components of the private system build.

Source

Application &
Components

Internal Build
Components

Third Party
Components

Build Script
Private System Build (SBCH08.fm 6/14/02) 95

• It can be done in an IDE or other development environment, as long as you
know that the compiler is compatible with the one used in the product
build process. Beware of differences that cause inconsistencies. And make a
integration build script available to enable debugging.

• It can skip steps that insert identifying information into the final product,
for example, updating version resources. Even steps like this can cause
problems, so it is best to include these steps as well, and just not check in
changes that happen because of the build process. For example, if your
changes did not change a version resource, do not commit the automatic
change to the resource.

• It can skip some packaging steps, such as building installation packages,
unless this is what the developer is trying to test.

It is important that the private build mechanism replicate the production build mech-
anism semantically as much as possible, while still being usable by a single devel-
oper.

Examine how you decide what gets put into the build, and what gets put into each
component, such as a jar file or a library. Some common approaches are:

• Build everything in version control. This has the advantage of making it
easy to decide what to build and include. The disadvantage is that it can
discourage developers from using the version control area to share files that
may not yet be ready for use, since if they do not build they can create
errors. You still need to how to package files into deliverable units.

• Build everything except for items marked to exclude. This allows you to put
anything in source control so that it gets included by default, but allows the
option of excluding certain files.

• Build only parts of the version control tree that are explicitly included in a
release list. The parts can be parts of a directory structure, or individual
files. The advantage of this approach is that it is makes it easier to put
experimental code into version control without worrying about breaking
the build.

Either approach can work well. The build everything approach is simplest. The
include/exclude approach can work well if the include/exclude list is maintained in
version control and can be built by developers, since the developers drive what code
and components get into the product. As long as developers and the nightly build the
same files and “install” them in the same places, you will be able to debug problems
easily. Any approach that has two different systems will cause conflict and delays.
96 (SBCH08.fm) Private System Build (8)

When rebuilding in your workspace you need to decide whether to do a full build or
an incremental build. A full build is best to ensure that you are not missing any
dependencies. But a full build may be impractical for active development, since it can
take a long time. So under most circumstances, you can do an incremental build if
your dependencies are set up correctly. You will want to do a clean build, when:

• You are adding new files to the source control system. In this case you also
want to start with an empty workspace. This is the only way to check that
you added the file to the correct place. It’s not unknown for someone to for-
get to check in a file, but for their builds and tests to pass because the file
was in their workspace.

• You make extensive changes involving key functionality. This may be over-
cautious, but is best to do if you have any doubts that your dependency
checking is in error.

You can also do a “clean” build of an individual component (for example, a library
file, or a jar).

They key thing to remember is that you want to do this process repeatedly. Requiring
a clean build all of the time will make the process too slow to be useful, but never
doing a clean build will expose you to any flaws in the way your tools handle depen-
dency checking. An Integration Build should catch any problems of this sort, but the
earlier that you catch the problem, the less expensive it is to fix.When in doubt, do a
clean build if time permits.

Once you make sure that your code works in your current environment. Then update
your workspace with the latest versions of code from the Codeline that you are work-
ing on, and repeat the build and test procedure.

A PRIVATE SYSTEM BUILD does take time, but this is time spent by only one person
rather than each member of the team should there be a problem. If building the entire
system is prohibitive, build the smallest number of components that your changes
effect.

If you changes a component that other components depend upon as an interface it
can become very difficult to cover every case. Ideally you would build all clients. In
this situation, let the SMOKE TEST (13) determine what executables to build.

As in many aspects of software development, this is a situation where communica-
tion is very helpful. If you think that you will be making a sweeping change, run all
of the tests, and then announce the pending change widely. This will allow people to
Private System Build (SBCH08.fm 6/14/02) 97

let you know about their dependencies, and also allow them to identify your change
as a potential conflict if they see a problem later.

Related to the question of clean versus incremental build is the question of “what” to
build. Start with whatever you need to run smoke tests. If you are developing a com-
ponent that is used by one or more applications, consider building one or more of
these executable applications. Ideally you would build all the applications that you
know about. You don’t need to be exhaustive though. If you miss something, your
integration build and related testing will find it. This approach is not “passing the
buck;” while each team member needs to attend to quality, everyone cannot take an
infinite amount of time to do this. Consider the time in the release cycle, the reliabil-
ity of your incremental build tools, and the time that it takes for a full build.

Regardless of what approach you take on a daily basis, it should be possible for you
to start from an empty workspace and recreate the products of the nightly build
when necessary.

Unresolved Issues

Once you know that you can build the system, you still need to know if you are not
breaking the functionality.To make sure that the system still works, do a SMOKE TEST
(13). This pattern enables you to do a smoke test.

If the system is very large, it may not be efficient to build every component that use
your comoponents.These left over dependencies will get validated in an INTEGRATION
BUILD (9).

What do you do when you find a build error in some other code that is related to
your changes? Ideally you should merge your own changes if you can identify them,
and they are not too extensive. If you change a widely used interface, and the team
has agreed to the change before hand, it may make sense to communicate the timing
of your change so that other team members can change code that they are responsible
for themselves. Your team dynamics will best decide the answer to this question.

Further Reading

• Steve McConnell discusses the need to do a build before checking in code in
Rapid Development(McConnell 1996).
98 (SBCH08.fm) Private System Build (8)

• The Pragmatic Programmer: From Journeyman to Master (Andy Hunt and Tho-
mas 2002b) Andy Hunt and Dave Thomas has much good advice about
build automation.
Private System Build (SBCH08.fm 6/14/02) 99

100 (SBCH08.fm) Private System Build (8)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 9
Integration Build
Each developer is working in their own PRIVATE WORKSPACE (6) so that he can control
when he sees other changes. This helps individual developers make progress, but
people are making independent changes in many workspaces that must integrate
together, and the whole system must build reliably. This pattern addresses mecha-
nisms for helping to ensure that the code for a system always builds.

� � �� � �� � �� � �

How do you make sure that the code base always builds reliably?

Since many people are making changes, it really isn’t possible for a lone developer to
be 100% sure that the entire system will build after they integrate their changes into
the mainline. Someone can be making a change in parallel with you that is incompat-

ible with your change. Communication can help you to avoid these situations, but
problems still happen.

When you check in code changes it is possible that, despite your best intentions, that
you may introduce build errors. You may not need to build the entire code base
before a check in; there may be components that you don’t know about, or that are
not part of another team’s work. Your build environment may be inconsistent with
the “release” build environment at any point in time. For example, if you work on a
PC or Workstation, you may be slightly out of date with respect to the standard, in
terms of compiler or operating system version, or version for a third party compo-
nent. Or you may be trying out a new version of component that seems to be compat-
ible with the version that everyone else is using. Duplicating your effort on multiple
systems when the risks of a problem are small seems wasteful.

The best that you can do is to try to build everything. A complete, clean build may
take up more time than you, or any other developer, can really afford to spend. On
the other hand, the time that it takes for one person to do a complete may be small
compared to the time that the team takes to resolve the problem; if you break the
build, it will slow other people down. It is better to localize the problem as soon as
you can. As Figure 9-1 shows, integration can be tricky, akin to putting puzzle pieces
together.
102 (SBCH09.fm) Integration Build (9)

A complete, centralized build may address some of these problems, but a centralized
build will work off checked in code, so the damage is already done.

Some users of the system may not want, need, or be able to build the entire code base.
If they are developing software that simply builds on top of another component then
they worrying about integration build issues will be a waste of their energy. They
really want a snapshot of the system that they know builds.

Tracking down inconsistent change sets is frustrating work for other developers, so
the smoother the build, the higher morale. You need a way to ensure that these incon-
sistencies are caught as quickly as possible, in an automated, centralized manner.

Figure 9-1 .Integration can be Difficult.
Integration Build (SBCH09.fm 6/14/02) 103

De-integration Build

At a couple of start-ups I worked at, “builds” were done by individual develop-
ers and then “released” for testing. This caused a number of problems when
the organization grew; different developers were experimenting with different
versions of third party components, and compliers, which is reasonable if you
want to minimize risk by exploring alternatives. But then when the build did not
work, or the built system didn’t run, it was hard to figure out who was responsi-
ble, since there was no one standard configuration or set of configurations that
each developer would run on their machines.

The fix was not to standardize development machines totally, since that pre-
vented experimentation. A build machine, and a nightly build fixed the prob-
lems.

Do a Centralized Build

Be sure that all changes (and their dependencies) are built using a central integra-
tion build process.

This build process should be:

• Reproducible
• As close as possible to the final product build. Minor items, such as how

files are version labeled might vary, but it is best if the Integration Build is
the same as the Product build. At the end of the integration build, you
should have a candidate for testing.

• Automated, or requiring minimal intervention to work. The harder a build
is to run, the more even the best-intentioned teams will skip the process
occasionally. If your source control system supports triggers, you could
have the build run on every check-in.

• A notification or logging mechanism to identify errors and inconsistencies.
The sooner that build errors are identified, the sooner they can be fixed.
104 (SBCH09.fm) Integration Build (9)

Also, rapid notification makes it easier to track the change that broke the
build.

Perform the build in a workspace that contains the components being integrated.
Determine how often to run the integration build based on the following factors:

• How long it takes to build the system
• How quickly changes are happening

If the system takes a long time to build, or if the product is fairly static, consider at
least a staged daily build, with an option to run additional builds as needed.

If the system can be built fairly quickly, consider running the build on every submis-
sion (check in) to source control. While this may seem resource intensive, it will make
it very easy to determine the sequence of changes that broke the build.The trade-off is
that if your version control system does not serialize changes adequately, you may
have build failures simply due to inconsistencies.

Identify this build with a label in your version control system.

Figure 9-2 .An Integration Build Process Assembles the Pieces

Integration Build
Integration Build (SBCH09.fm 6/14/02) 105

The integration build should be repeated on all supported platforms when the sys-
tem supports them. Having individual developers do multiple builds can be a time
sink.

Remember, the intent of the integration build is to catch build issues that fall through
the cracks. Only if the builds fail consistently for the same reason should you add
additional pre-checkin verification steps.

If appropriate, use the integration build as the basis for an install kit.

You check in a change to the repository. The source control system responds to the
check in by extracting all of the files for the system, and it builds the resulting system.
Errors in the build get reported to the build master as well as the person who submit-
ted the change.

Unresolved Issues

Even if the system builds it may still not work. Follow up the Integration Build with a
SMOKE TEST (13) to ensure that the integration build is usable. If this build is to be pub-
lished as a named stable baseline, also do a REGRESSION TEST (15)

Further Reading

• Rapid Development (McConnell 1996)describes a Daily Build and Smoke Test.
• The Daily Build and Smoke Test Pattern first appeared in Coplien’s pattern

language(Coplien 1995).
106 (SBCH09.fm) Integration Build (9)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 10
Third Party Codeline
You want to focus on building the components for which you can add the most value,
and not on basic functionality that you can easily buy. Your codeline is associated
with a set of external components that you will ship with your product. You may cus-
tomize some of these to fit your needs. You need to associate versions of these com-
ponent with your product. When you create your PRIVATE WORKSPACE (6), or when you
build a release for distribution, you need to associate these components with the ver-
sion you are checking out. You also want your REPOSITORY (7) to contain the complete
set of components that comprise your system. This pattern shows how to track the
third party components in the same way that you track your own code.

� � �� � �� � �� � �

What is the most effective strategy to coordinate versions of vendor code with ver-
sions of product code?

Using components developed by someone else means letting go of control of both the
implementation and the release cycle for what could be a key building block of your
system. The essence of source control and release management is the identification of
what components go together to reconstruct a given version of a product. You still
need to be able to reconstruct old builds for debugging and support purposes, so you
need a way to track which vendor release goes with what version of your code. If this
was all your own code, you could simply label it in the version control system at the
time that you made a release. But vendor release cycle are different than your release
cycles, as Figure 10-1 shows.

You could have a manifest or list that listed what versions of third party components
went with which versions of your product. You need to easily identify which ver-
sions of components go with which versions of your product.

Using a list to associate a vendor release with your products version can be tricky
during development. It is easy to use the third party component’s installation process
if you need to are working with a static version, but in a dynamic environment you
want to make installation with the correct version simple for developers.This can get
complicated during development as well, as you need to coordinate third party code
versions with your code when you build a workspace, and you want to be able to
build and update a workspace automatically. Consulting a list, and installing the
right versions of components adds an element of risk.

Figure 10-1 .Vendor Releases and Your Releases are not in Sync.

Vendor Release Scheclule

Your Release Schedule

R3.1

R1 R2 R3

R4.0
108 (SBCH10.fm) Third Party Codeline (10)

When you decided to use third party code, it was because you wanted to save your-
self work, and because the third party added more value in a specific domain.There
are times when the outside code is not perfect and needs changes and adaptations to
work. You could be using publicly available code, and need to customize it to fit your
particular needs, or you might need to fix a bug in vendor code if you have access to
the source. If you make custom changes to the vendor-provided code, you need to
provide a way to integrate these changes into your subsequent releases until the ven-
dor makes a release with the changes you need. In some cases your changes may
never be in the vendor release, and you need to re-apply them to subsequent vendor
releases.

Even with binary only components that you do not make changes to, you still need to
associate releases of the outside code with releases of your product.

Using third party code is, by its nature, risky, but treating third party code as ‘out-
side’ your system is risky if your system depends on it.

A Few Stitches, too Late

I’ve seen variations on the following scenario at a number of companies that I
have worked. A company has a centralized build process that works fairly well.
They use a number of third party packages, and they handle version issues by
using install kits. When a developer needs to work on an older release, use the
install kits. This works fine until they find a need to patch the third party code.
Then it is tricky to describe what custom version of the code goes with a point
in the development cycle.

Another frequent issue is having difficulties debugging an old release that get
tracked down to the wrong version of a particular third party component com-
ponent.

When people do their development against shared server systems, the prob-
lem is made worse since there is a belief that only the server need be
updated. This does not reflect the reality that you may ned to fix a bug on an
old version.
Third Party Codeline (SBCH10.fm 6/14/02) 109

The problems have almost always been the result of a desire to avoid extra
work to track the third party code. As is often true, the short term “savings” are
more than lost in the long run.

Use the tools you already have

Create a codeline for third party code. Build workspaces and installation kits from
this codeline.

Use your version control system to archive both the versions of the software you
receive from the vendor, as well as the versions you deliver to your customer. Use the
branching facility of the VCS to track separate but parallel branches of development
for the vendors code, and your customized versions of the vendors code. When you
get vendor code, make it the next version in the vendor branch and then merge the
code from that branch into your customized branch. Your version control system
should maintain enough information to build any version of your product using the
correct versions of all components, internal and external.

What is “third party code?” Third party code is any code supplied by someone out-
side your organization, or fixes and enhancements to that code. “Plug-ins” and exten-
sions to a third party framework are not third-party code and should be treated as
product code. For example, if you have a library for parsing XML, that is third party
code. If you find that this version of the parser does not parse certain XML correctly,
the fix for that should be made to the third-party codeline. Parsing event handlers
that you write to use in your application are not part of the third party codeline,
though they certainly depend on the third-party code.

To accept vendor code, do the following:

• Add the vendor code to the appropriate directory of a vendor codeline. Add
it to this codeline in exactly the way it unpacks from the distribution
medium. If the component is something that you can build, you should be
able to build it from the checkout area.

• Label the checkin point with a label identifying the product and version.
• Immediately branch this new codeline. All the projects that will use this

version of the vendor code will use the code off of the branch, making it
possible to customize the code when you have source available. If you need
110 (SBCH10.fm) Third Party Codeline (10)

to build the components locally, build them on this branch and check in the
derived objects.

• Check in derived objects here to save time and effort; they should not
change frequently.

• When a new vendor release appears, add it to the mainline portion of ven-
dor codeline. Branch again, and merge any relevant changes from the prior
branch into the new branch.

Figure 10-2 shows the resulting codeline.

You can now easily reproduce prior versions of your own releases as well as those of
the vendor. Customization differences can easily by isolated and reproduced so you
can see what you had to change for a given release. Differences between vendor
releases can easily be isolated and reproduced to see what the vendor changed from
release to release By tracking customization changes on a separate branch from ven-
dor changes, you are basically applying a divide and conquer approach of orthogo-
nalization: instead of one big change, you logically partition it into vendor changes
and custom changes from a common base version. This reduces merge complexity.
The resulting project version tree reflects the real-world development path relation-
ships between the vendor and your group. This requires more storage space than
simply keeping one source tree or one set (branch) of versions of the source tree.
Requires the oft-despised merging of parallel changes. There are many who feel that
“merging is evil!” However, in this case, you are not the one who controls the devel-
opment of the code. You are at the mercy of the 3rd party supplier for this. The best
you can hope for is that they incorporate all of your changes into their code-base.
Thus, merging is really unavoidable here.

Figure 10-2 .Third Party Codeline

Vendor
Release 1

1.0 2.0

Vendor
Release 2

/Your Changes /R2Localchanges changes

/vendor
Third Party Codeline (SBCH10.fm 6/14/02) 111

When you release a version of your product, label the code on the third party code-
line that your product has been built and tested against with the same label as the
product release.

Even if you make no changes to the vendor code, the release history is now traceable,
and the vendor releases can get labelled with the appropriate product releases. Even
if all you have access to are interface files (header files) and derived objects (libraries,
jar files, etc.), track these using version control as well, even though you will not have
the same amount of delta information available. If you do make changes you should
check in ‘compiled’ versions of the product that include the changes. When you get a
new vendor release, you can compare the source code in the various branches and
consider doing a merge if your changes are not in the later release.

To create a developer workspace, make sure that you check out the third party com-
ponents are part of the product check in. If your version control system supports the
concept of sets of related parts of the source tree (i.e., modules), when you check out a
given point in time of your product, you get the appropriate version of the third
party component for free. If your version control system allows you to re-arrange the
locations of objects during a check in, check binary objects into the appropriate com-
mon ‘bin’ directory. Otherwise, be sure to alter PATHs and CLASSPATHs appropri-
ately so that build and runtime environments point to the correct version.

Include the appropriate third party product branches when labelling the release. For
some components you may have licensing constraints that say that you must use the
vendor installer. In this case, you still have tracability built into your version control
system, and you know that what you are shipping matches what you are developing
with. You may also be able to simply integrate the third party code into your own
installation process by placing binary objects in the same place that your product spe-
cific code lives.

To reproduce a prior build, including the correct third party code check out the
appropriate label into a new workspace, and have the correct versions of all compo-
nents. For some software component systems, such as COM, you will need to deal
with the issues about system-wide registration of specific component versions.

If you have customized versions of build tools, for example, gcc, or if your product is
dependent on a particular version of a particular tool, you can handle it by thinking
about what you need to ship. If you need to ship all or part of the tool as a run-time
component, use this approach. If the tool is used only at build time, you can still track
it in your system using a third party codeline, but dependencies between the tool ver-
112 (SBCH10.fm) Third Party Codeline (10)

sion and the product version can be handled by flags and identifiers in Makefiles, for
example.

The procedures here apply to any run-time component, for example language exten-
sions to languages such as Perl, Python, or Tcl. The specific version of the interpreter
environment is another story.

When you are using a dynamically loaded third party component that is a shared
resource that other products may use, you have to decide how to install it if it already
exists on the target system. The options are to upgrade existing installations, require
that your version be the correct one, or, if the component technology supports this,
install the version you expect on the target system in addition to any existing ver-
sions. This may be tricky, for example, in the case of a COM component, where the
vendor has not followed the appropriate version conventions. Since only one version
of a COM component can be the latest, it may be impossible to have more than one
installed. In other cases, you can install multiple versions by altering the PATH or
CLASSPATH environment when you load your system. This is not so much a techni-
cal issue as a support and positioning issue. Multiple copies means more space, but
running with an unknown version of a third party component makes verification and
testing easier.

Interpreted languages present a special case of this problem. If your system depends
on a specific version of Python or Perl you can install the additional version of the
interpreter in a ‘special’ path, you can overwrite an existing installation, affecting all
users of the product. Some of these tools allow you to build an executable that has an
embedded interpreter, increasing isolation at the cost of a larger executable, and less
access to the source code, which eliminates a benefit of using a scripting language.

Unresolved Issues

If you are using a third party product that is very stable, or which you will never cus-
tomize, you may not need to create a branch. The cost of the branch in this case is
small, and it gives you the flexibility to make changes later, if you need to.

Further Reading

?????
Third Party Codeline (SBCH10.fm 6/14/02) 113

114 (SBCH10.fm) Third Party Codeline (10)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 11
Task Level Commit
An INTEGRATION BUILD (9) is easier to debug if you know what went into it. This pattern
discusses how to balance the needs for stability, speed, and atomicity.

� � �� � �� � �� � �

How much work should you do between submission to the Version Control Sys-
tem? How long should you wait before checking files in?

When you make changes to the code base you want to focus on the act of coding.
Administrative tasks, like checking in changes, pre-check in testing, etc. are a distrac-
tion. Coding is a sequence of changes, bug fixes, and enhancements, and you need to
track these changes.The revision history in your version control tool should reflect
the way that file changes map to functionality changes.

To add one feature, or to fix one defect, you may need to make changes across many
parts of the code base. But every change introduces a potential instability in the main-
line. You would like to be able to rollback or remove a change if it causes unexpected
problems. For this to work changes need to be consistent and complete.

Depending on your CODELINE POLICY (12) a check in may involve a long sequence of
steps, including testing, that will take up time. You may want to avoid this overhead
and delay checking in a change for as long as possible. In the case of multiple feature
changes that require changes to more than one module, it is certainly easier to do all
of the changes to that module at once. But the longer that you are working on your
own copy of the module, the more likely you may be in conflict with other people’s
changes, and the harder it will be to roll back a particular change.

When an integration build breaks you want to be able to track down the change the
broke it. A long list of changes in an integration build report is more work to process,
but a more detailed change history makes it possible to selectively remove changes
that may have broken the build.

It can be tricky to decide what a task oriented change really is. Sometimes the defini-
tion of a task is natural. You may be fixing a problem that was assigned an issue num-
ber. If the issue can be fixed by changing one file, you have a natural atomic check in.
If a change spans multiple components across various systems, it is not obvious what
changes go together unless they are checked in. If you err on the side of smaller units
of work per check in, you gain the overhead of processing the check in. If you err on
the side of larger grained units of work, you lose the ability to back out small
changes.

You want to be able to maintain a stable codeline, and associate changes with features
or defects that were fixed.

Coarse Grained Tasks

We were working in an organization that had a very rigorous pre-check in vali-
dation process. As a result, developers would check in code at most once a
day, occasionally less often. Because of this, each check in would often mean
more complicated merges (in the worst case) or failures that were hard to track
down (better case). While the motivation was a reluctance to check things in,
the deeper problem was that each check in covered multiple tasks, so it was
116 (SBCH11.fm) Task Level Commit (11)

hard to say what the real source of a problem was, and harder to roll back
changes.

After enough of these situations, people started doing smaller grained check-
ins.

Do One Commit per small-grained task

Do one commit per small grained, consistent task.

Strive to have a each commit of code changes reflect one task. This will allow you to
do fixes in the sequence that allows you to make the most important changes
first.The unit of work can be a new feature (or part), and problem report, or a refac-
toring task.

It is OK to batch changes if it really makes sense and batching does not add signifi-
cantly to the time that you are working on a local copy of the code. Consider the com-
plexity of the task, how many files, or components you need to change to implement
the task, and how significant of an effect the change will have on the system (how
risky it is). Each change should be represent a consistent state of the system.

Example of reasonable change tasks are:

• A problem report (but if the problem is a broad problem, it may have two or
more check ins associated with it.)

• Changing calls to a deprecated method to use a new API for an entire sys-
tem.

• Changing calls to a deprecated method for a coherent part of the system.
• A consistent set of changes that you accomplished in a day.

When in doubt, error on the side of more check ins because it is easier to roll back
changes, and also see the effects of integration with other people’s work. Also, since
your revision control system is an indicator of the ‘pulse’ of the development work,
strive to check in changes at least once a day, if it makes sense.

Sometimes it will make sense to have a check in for multiple defect reports or fea-
tures. A degenerate example of this is a one or two line section of code that was
responsible for numerous problem reports. In this circumstance multiple check ins
would not really be possible. But whenever you are changing separate parts of the
code base, do one check in per feature or defect report.
Task Level Commit (SBCH11.fm 6/14/02) 117

A pre check in policy that is too vigorous for an can discourage this practice, so con-
sider ways to streamline the pre-check in validation to test only what is necessary.
Extended code freezes make it difficult to maintain this practice. Extended code
freezes are bad for many reasons, as they interrupt the flow of work.

Before you check in, be sure to catch up your workspace to the current state of the
codeline and test for compatibilities.

Unresolved Issues

Some changes are far reaching, and inherently disruptive and long lived. In this case
consider using a TASK BRANCH (19). If there are multiple people working on a task
branch, then perform small grained commits on the task branch.

Unit Tests, Smoke Tests, and Regression Tests, as well as the Edit Policy provide guid-
ance on how encourage small grained checkins.

Good integration between the development environment and the version control sys-
tem will make the commit process fit in better with the flow of the developer’s work.
118 (SBCH11.fm) Task Level Commit (11)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 12
Codeline Policy
When you have multiple codelines, developers need to know how to treat each one.
A RELEASE LINE (17) might have strict rules for how and when to check things in, but
an ACTIVE DEVELOPMENT LINE (5) might have less strict rules. This pattern describes
how to establish the rules for each codeline to suit its purpose.

� � �� � �� � �� � �

How do the developers know which codeline to check their code into, and when to
when to check it in, and what tests to run before check in?

Each codeline has a different purpose; one codeline might be intended for fixing bugs
in a particular release; another codeline might be used for porting existing code to
another platform, yet another is for day to day development. These codelines have

different requirements for stability. If code is checked into a codeline ignoring the
rules productivity will suffer. A developer needs to know which codeline they should
be using, and what the policies are on that codeline.

You can identify different codelines by their names. A codeline's name can tell you
something about its purpose, but it can't express all the finer points of codeline usage
such as the policies. For example, a “release line” can be very restricted, or only
slightly slow, depending on the organization’s strategy and vision. And it can be hard
to come up with good, unambiguous naming conventions. Figure 12-1 shows how
we might diagram the association between a codeline and a policy.

Once you decide on how stable a codeline needs to be, and how to realize that level of
stability through processes, you need to inform developers of these policies and then
enforce them.You can provide formal documentation describing the finer points of
codeline usage, but this requires extra effort for documentation and maintenance;
once the documentation gets out of synch with the policy, it will be useless. Also
developers may perceive the formality of such a document as overbearing, or as if it
were some draconian tactic to interfere with “real work.” It is easier to have people
use a policy that they understand and believe in than one that seems arbitrary
(Karten 1994).

Figure 12-1 .Each Code Line needs different rules.

Release Line Policy

Main Line Policy

ThirdParty Line Policy

/Releas

/main

/thirdParty
120 (SBCH12.fm) Codeline Policy (12)

You want developers to behave properly and follow the policy, but even well inten-
tioned people forget things in the heat of a deadline. You can use peer pressure or
punishments to enforce policies, but that can break down the team.

You can use automation to enforce policies, but it is hard to implement automated
procedures correctly. Sometimes some steps in a process do not make sense, and it is
hard to encode policies that allow you to skip a step. If you do provide a mechanism
for sidetracking parts of the process, developers may ignore the process, out of a well
intentioned sense of experience, if nothing else.

For a codeline, different roles might have different degrees of leeway with executing
the processes. For example, you may want to forbid permanently deleting a file’s his-
tory on a release line, but there are times when it makes sense, such as when someone
checks in a new file accidentally. Someone needs to be able to fix this, or you will end
up with useless files in your codeline. If you are too restrictive with permissions, you
need to be able to give people permissions they need quickly. For example, if only the
Director of Development can perform certain operations, but the Director also travels
much, you may be stuck. You may not be able to have an open codeline in all cases
without having a free for all.

Impedance Mismatch

I worked at a software company that developed a number of products that
were based on some common components. We were doing major work on
one of the components, so there would be points in time when interfaces were
evolving, or there might even be some bugs or inconsistencies. We were told
that this was an evolving codeline and to develop accordingly. The other cli-
ents of the component were upset at having to adapt to changes, even though
they were staged with plenty of warning.

The problem here was that the codeline policy didn’t mesh with the needs of
all of the users. There were a number of possible ways to address the prob-
lem. A stricter policy would have slowed progress. We could also have treated
the other teams as external customers, providing them with ‘released’ versions
of the library.
Codeline Policy (SBCH12.fm 6/14/02) 121

Define the Rules of the Road

For each branch or codeline, formulate a policy that determines how and when
developers should make changes. The policy should be concise and auditable.

The codeline policy explicitly states the rudimentary policies an organization has
about how to conduct concurrent development and how to manage releases. Vance
says that “a codeline policy defines the rules governing the use of a codeline or
branch” (Vance 1998). In addition to using naming conventions and meaningful
codeline names, formulate a coherent purpose for each codeline. Describe the pur-
pose in a clear and concise policy. The policy should be brief, and should spell out the
“rules of the road” for the codeline, including:

• The kind of work encapsulated by the codeline, such as development, main-
tenance, a specific release, function, or subsystem;

• How and when elements should be checked-in, checked-out, branched and
merged;

• Access restrictions for various individuals, roles, and groups;
• Import/export relationships: the names of those codelines it expects to

receive changes from, and those codelines it needs to propagate changes to;
• The duration of work or conditions for retiring the codeline;
• The expected activity-load and frequency of integration

Make the policy short and to the point: a good rule of thumb is 1-3 paragraphs, with
one page as an absolute maximum.

Keep in mind that not all codeline policies will require all of the above information.
Only specify what is essential. Some VC tools allow you to associate a comment with
each branch and codeline name. This is an ideal place to store the description of a
suitably brief codeline policy. Developers can run a branch-description for the code-
line, instead of digging around for its documentation. Otherwise, store the codeline
policy in a well known, readily accessible place. You could perhaps provide a simple
command or macro that will quickly display the policy for a given codeline name.

You should create a branch whenever you have an incompatible policy.

Some example of policies for include:

• Development codeline: interim code changes may be checked in; affected
components must be buildable. (Wingerd and Seiwald 1998)

• Release codeline: software must build and pass regression tests before
check-in; check-ins limited to bug fixes; no new features or functionality
122 (SBCH12.fm) Codeline Policy (12)

may be checked in; after check-in, branch is frozen until entire QA cycle is
completed.(Wingerd and Seiwald 1998)

• Mainline: all components must compile and link, and pass regression tests;
completed, tested new features may be checked in. (Wingerd and Seiwald
1998)

Enforce parts of the policy by using any mechanism that your version control tool
supports, such as triggers. If automatic enforcement becomes too constraining, use
automation to report on adherence to the policy.

Unresolved Issues

To enforce a codeline policy effectively you need to balance the utility of using auto-
mation and of the group’s culture. You should look into your tools to see what mech-
anisms they provide. You can also consider using a tool such as ANT, and write ANT
tasks that enforce and/or audit your policies.

Further Reading

• You can enforce codeline policies with the mechanisms in various tools.
CVS, Perforce, and other tools support triggers that run before or after
check in. Tools such as ANT allow you to codify many build-related activi-
ties as tasks
Codeline Policy (SBCH12.fm 6/14/02) 123

124 (SBCH12.fm) Codeline Policy (12)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 13
Smoke Test
An INTEGRATION BUILD (9) or a PRIVATE SYSTEM BUILD (8) are useful for verifying build-
time integration issues.But even if the code builds, you still need to check for runtime
issues that can cause you grief later. This verification is essential if you want to main-
tain a ACTIVE DEVELOPMENT LINE (5). This pattern addresses the decisions you need to
make to validate a build.

� � �� � �� � �� � �

How do you know that the system will still work after you make a change?

You hope that you tested the code adequately before checking it in. The best way to
do this is to run tests after every build and before you check something in to source
control, but you need to decide which tests to run.

You can write tests that target the most critical or failure prone parts of the code, but
it is hard to develop complete tests.

You can play it safe and test everything that you can think of, but it is time consum-
ing to run exhaustive tests. and your progress can be very slow. Also if the test takes
too long, you may lose focus and have a harder time correlating your recent changes
with any problems. Long running tests encourage larger grained changes between
testing. Unstructured and impromptu testing will help you to discover new prob-
lems, but it may not have much of an effective yield.

Running detailed tests is time consuming, but if you check in a change that breaks the
system, you waste everyone’s time. Rapid development and small grained checkins
means that you want the cost of pre-checkin verification to be small.

The Right Balance

Smoke tests are important on many levels. At one place I worked, release can-
didates were built periodically, and the first developer to try them got the plea-
sure of finding (and sometimes fixing) all of the bugs. This led to people being
reluctant to be the first to use the new builds, and led to a fairly strong culture
of blame.

At another place, the pre-checkin test process was so exhaustive that develop-
ers feared it, and they did as few checkins as possible, making many changes
per checkin., thus not isolating changes. This had a negative effect on produc-
tivity. Also, it was very likely that someone would check in a conflicting change
in the 60 minutes that the test ran. Running the long tests reduced productity
and quality.

The lessons here are that smoke tests are an essential pre-checkin step, and
that more testing (pre-checkin) is not always better.

Verify Basic Functionality

Subject each build to a smoke test that verifies that the application has not broken
in an obvious way.
126 (SBCH13.fm) Smoke Test (13)

A smoke test should be good enough to catch “show stopper” defects, but disregard
trivial defects(McConnell 1996). The definition of “trivial” is up to the individual
project, but you should realize that the goal of a smoke test is not the same as the goal
of the overall quality assurance process.

The scope of the test need not be exhaustive. It should test basic functions, and sim-
ple integration issues. Ideally it should be automated so that there is little cost to do
it. The SMOKE TEST should not replace deeper integration testing. A suite of unit tests
can form the basis for the smoke test if nothing else is immediately available. Most
importantly, these tests should be self scoring. They should return a test status and
not require manual intervention to see if the test passed. An error may well involve
some effort to discover the source, but discovering that there is an error should be
automatic.

Running a Smoke test with each build does not remove the responsibility for a devel-
oper to test his changes before submitting them to the repository. Developers should
run the smoke test should be run manually prior to committing a change. A smoke
test is most useful for bug fixes, and for looking for inadvertent interactions between
existing and new functionality. All code should be unit tested by the developer, and
where reasonable, run through some scenarios in a system environment. A smoke
test can also be run as part of the build process in concert with more through tests,
when the build is to be a release candidate

When you add new basic functionality to a system, extend the smoke test to test this
functionality as well. But do not put exhaustive tests that better belong in Unit Tests
or Regression tests.

DAILY BUILD AND SMOKE TEST (20) (Coplien 1995) describes the role of smoke test in
maintaining quality. Having a Smoke Test as part of a Daily build is key to establish-
ing NAMED STABLE BASES (20), which form the basis for workspaces.

A smoke test should be:

• Quick to run, where ‘quick’ depends on your specific situation
• Self scoring, as any automated test should be.
• Provide broad coverage across the system that you care about
• Be runnable by developers, as well as part of the quality assurance process.

The hardest part about a self scoring test is to determine input/output relationships
among elements of a complex system. You don’t want the testing and scoring infra-
structure to be buggy. You want the test to work with realistic data exchanged
between parts of the system.
Smoke Test (SBCH13.fm 6/14/02) 127

To get meaningful results from a Smoke Test you need to work off of a consistent
build. A PRIVATE SYSTEM BUILD (8) will let you build the system in a way that will give
meaningful test results.

Canned inputs are fine as long as they are realistic enough. If your testing infrastruc-
ture is too complicated, you add risks around testing the test.

If the quality goals are such that you need to do exhaustive testing, consider using
Task Branches, or have a different codeline policy. Also consider branching release
lines.

A Smoke test is an end to end test, more black box than white box.

Unresolved Issues

A Smoke test does leave gaps that should be filled by a more thorough QA procedure
and REGRESSION TEST (15) suite to do more exhaustive testing to identify degradation in
behavior. Developers should also work develop a UNIT TEST (14) for every module that
they need. Use a UNIT TEST (14) to verify that the module you are changing still works
adequately before you check the change in.

The trade-off we need to make involves the speed of check in versus the thorough-
ness of the test. The longer the pre-checkin test, the longer the check in. Longer check
ins my encourage developers to have larger granularity commits. This goes against
an important goal of using version control.

Further Reading

• Rapid Development (McConnell 1996) has some good advice on various test-
ing strategies, including the trade-offs between completeness and speed.

• Mythical Man Month (Frederick P. Brooks 1995) also has advice on making
these trade-offs, and it is a class book that every software developers should
read at some point.
128 (SBCH13.fm) Smoke Test (13)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 14
Unit Test
Sometimes a SMOKE TEST (13) is not enough to test a change in detail when you are
working on a module, especially when working on new code. This pattern shows
you how to test detailed changes so that you can ensure the quality of your codeline.

� � �� � �� � �� � �

How do you test whether a module still works as it should after making a change?

Checking that a class, module or function still works after you make a change is a
basic procedure that will help you maintain stability in your software development.
It is also easier to understand what can go wrong at a low-level interface than it is at a
system level. On the other hand, testing small scale units all of the time can become
tedious.

Integration is where most of the problems become visible, but when you have the
results of a failed integration test, you are still left with the question: “What broke?”
Also, testing integration level functions can take longer to set up, they require many
pieces of the system to be stable. You want to be able to see if any incremental change
to your code broke something, so being able to run the tests as often as you like had
benefits. You also want to run comprehensive tests on the item that you are changing
before checkin.

Since a Smoke Test, is by its nature somewhat superficial, you want to be able to
ensure that each part of a system works reasonably well. When a system test, or a
smoke test, fails you want to figure out what part of the system broke. You want to be
able to run quick tests in development to see the effect of a change. Additional testing
layers add time. Tests that are too complex take more effort to debug than the value
that they add.

We want to isolate integration issues from local changes and we want to test the con-
tracts that each element provides locally.

Safety First

I’d worked at a number of places where testing was a bit ad-hoc. We did sys-
tem tests, but never really focused on unit tests. When system tests failed,
we’d run code through the debugger, and sometimes we found a problem.
Other times we found that the problem was that a client violated an interface
contract. It took more effort that we really needed to spend. After the XP book
came out, and having been inspired by chatting with Kent Beck and Martin
Fowler at OOPSLA, I took unit testing a bit more seriously.

The next project my colleague and I wrote unit tests using the CPP unit frame-
work. It took some effort to convince them of the value, but when we started to
isolate problems quickly (often to parts of the code that did not have unit
tests!), my colleague became convinced. Not only that, but the unit tests made
making code changes less scary
130 (SBCH14.fm) Unit Test (14)

Test The Contract

Develop and Run Unit Tests.

A unit test is a test that tests fine grained elements of a component to see that they
obey their contract. A good unit test has the following properties (Beck 2000):

• Automatic and self evaluating. A unit test can report a boolean result auto-
matically. A user should not have to look at the detailed test results unless
there is an error.

• Fine grained. Any significant interface method on a class should be testing
using know inputs. It is not necessary to write tests to verify trivial methods
like accessors and setters.To put it simply, the test tests things that might
break.

• Isolated. A unit test does not interact with other tests. Otherwise one test
failing may cause others to fail.

• It should test the contract.The test should be self contained so that external
changes do not effect the results. Of course, if an external interface changes,
you should update the test to reflect this

• Simple to run. You should be able to run a unit test by a simple command
line or graphical tool. There should not be any setup involved.

You should run unit tests:

• While you are coding
• Just before checking in a change and after updating your code to the current

version.

You can also run all of your unit tests when you are trying to find a problem with a
smoke test, regression test, or in response to a user problem report.

Try to use a testing framework like JUnit (or cppUnit, PyUnit, and other derived
frameworks). This will allow you to focus on the Unit Tests, and not distract yourself
with testing infrastructure.

Unit testing is indispensable when making changes to the structure of the code that
should not effect behavior, such as when you are refactoring.(Fowler 1999)

Grady Booch in Object Solutions suggests that during evolution you carry out unit
testing of all new classes and objects, but also apply regression testing to each new
complete release (Booch 1996).

I’ve found that if I can’t come up with a good unit test for a class or set of classes, I
should make sure that my design is not overly complicated, and not abstract enough.
Unit Test (SBCH14.fm 6/14/02) 131

Unresolved Issues

Writing unit tests can be tedious. You should try to use a framework like JUnit to sim-
plify some of the tedious parts of writing test cases.

If your public interface is narrow, but you want to test other functions, you need to
decide whether to open up your interface to allow for testing, or do something else.
There are a number of approaches to this problem.

Further Reading

• Unit Testing is a key part of Extreme Programming (Beck 2000; Jeffries et al.
2000).

• To simplify your testing, try the testing framework JUnit (http://
www.junit.org) for Java programming, and the related frameworks for
many other languages, available at http://www.xprogramming.com.

• The Art of Software Testing by Glen Meyers (Myers 1979)is a classic book on
testing, and has a good discussion on black box versus white box testing.
The book is based on work on mainframe systems, but it is still useful.
132 (SBCH14.fm) Unit Test (14)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 15
Regression Test
A SMOKE TEST (13) is quick but not exhaustive. For it to be effective, you need to do the
hard work of exhaustive testing as well. If you want to establish release candidates,
you need to be sure that the code base is robust. This pattern explains how to gener-
ate builds that are no worse than the last build.

� � �� � �� � �� � �

How do you ensure that existing code doesn’t get worse as you make other
improvements?

Software systems are complex and with each change or enhancement to a system
comes the possibility of breaking something seemingly unrelated to your changes.
Fixing a defect has a substantial chance of introducing another(Frederick P. Brooks

1995). Without change, you can’t make progress, but the impact of a change in hard to
measure, especially in terms of how the a unit of code interacts with the rest of the
system.

You can exhaustively test your system after each build. Exhaustive testing takes time,
but if you don’t do this testing you waste developer, and perhaps, customer time. If
everyone runs exhaustive tests all of the time, they will not be able to spend much
time coding.

Even if you decide to do exhaustive system-level testing periodically on the code
base, you are left with the problem of how to structure the tests. You can write tests
from first principles by doing an analysis of the inputs and outputs, but the payoff for
writing tests like this on a system level may be small relative to the amount of effort
that they take to write.You can also make intelligent guesses about what to test, but a
software system is always full of surprises, especially in the ways that it can fail.

When you solve the problem of which system tests to execute, you are still left with
the problem of when to run them. Some integration tests may need resources that are
not on every development machine. What is a good development environment may
not always be the best test of the system. Some problems may require large data sets
to reproduce, or multiple clients in a client-server system. You may not have the
resources to run these sorts of tests all of the time.

When the system does break, you want to identify the point in time when something
broke. If you run the tests on every build or check in to source control, you will be
able to identify when something failed. But your testing may not keep up with your
check in and build process if the tests take long enough.

If your exhaustive tests find a problem, and you fix it, you want to be sure that you
can identify when this problem happens again, since you don’t want to waste time in
known issues. A problem that happens once can happen again (this is what we mean
by regression, after all). This means that we should accumulate a set of test cases as
we discover problems. Especially since we may not be able to guess all of the prob-
lems ahead of time. These test cases can add up over time.

We need to be able to check for these recurring failure modes.
134 (SBCH15.fm) Regression Test (15)

Two Steps Back

I worked for a small software product company that had a code base com-
bined of newer, cleaner code, and also code that evolved. On any given day, it
was not clear whether you could get an update from source control and have a
working system, or whether you could would have to spend the day getting the
system to a point where you could do your work. The problem was that there
was no automated testing of the core APIs. People would avoid moving to a
current code base in fear of wasting a day, but this eventually caused other
problems.

The lack of a way to check for old problems recurring caused many easily pre-
ventable quality issues.

Test for Changes

Run regression tests on the system whenever you want to ensure stability of the
codeline, such as before you release a build, or before a particularly risky change.
Create the regression tests from test cases that the system has failed in the past.

Regression tests are end to end black box tests that cover actual past or anticipated
failure modes. A Regression test can identify a system level failure in the code base,
but may not necessarily identify what broke. When a regression test fails, debugging
and unit tests may be necessary to determine what low-level component or interface
broke.

Regression Tests test changes in integration behavior. They are large grained, and test
for unexpected consequences of integrating software components. Unit tests can be
thought through fairly easily. As you add component interactions it is harder to write
tests based on ‘first principles.’

Build regression test cases out of:

• Problems that you find in the pre-release QA process
• Customer and user reported problems
• System level tests based on requirements.

As you discover problems, write a test that reproduces the problem and add that sce-
nario to the test. Over time you will end up with a large suite of tests that cover your
Regression Test (SBCH15.fm 6/14/02) 135

most likely problem areas. Each problem may involve more than one test case. You
can include running all unit tests in your Regression testing, but it is better if the tests
involve system input.

Regression Testing is designed to make sure that the software has not taken a step
backwards (or regressed) Always run the same tests for each regression cycle. Add
tests as you find more conditions or problematic items to test. Always add test cases
to the regression test suite; If a problem happened once, it is likely to happen again,
so remove test cases only for very well thought through reasons.

Since regression tests can take a long time to run, you don’t want to run them before
every check-in, or even after every build (unless resources permit). There are advan-
tages, however to having an automated procedure to run the regression test after
each change, so that you can identify the point at which the system regressed. Run
the regression tests as part of the nightly build. Developers should also run a regres-
sion test before any significant sweeping change. If something breaks, you can
always run the unit tests to localize the change. You also have to investigate if the
unit test inputs no longer match the system. Institute a policy of automated regres-
sion testing tied to each release. (Booch 1996)

Further Reading

• Steve McConnell has a lot of information about testing of all kinds in Code
Complete (McConnell 1993)

• The Art of Software Testing (Myers 1979)by Glen Meyers is a classic.
136 (SBCH15.fm) Regression Test (15)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 16
Private Versions
Sometimes you want to rapidly evaluate a complex change that may break the sys-
tem while maintaining an ACTIVE DEVELOPMENT LINE (5). This pattern describes how to
maintain local traceability without affecting global history unintentionally.

� � �� � �� � �� � �

How can you experiment with a complex change and benefit from the version con-
trol system without making the change public?

Some programming tasks are best done in small, retractable, steps. If you are making
a complex change, you may want to checkpoint an intermediate step so that you can
back out of a change easily. For example, if at there are a number of design choice

points, you may want to explore one path, and be able to back out to an earlier deci-
sion point when you see a problem with the implementation, as in Figure 16-1

Your version control system provides a way of checkpointing your work, and revert-
ing to earlier states of the system. When you check something in to the active code-
line, you subject every other member of your team to the changes. When you are
exploring implementations, you may not want to share your choices until you have
fully evaluated them. You may even decide that the change was a dead end.

If you don’t want to use the version control system to track your changes, and not
cause other developers delay, you will have to test your changes in accordance with
your codeline policy. You may also need to integrate changes so that other code
works with any API changes that you made. This can take an unjustifiably long time
if you are just experimenting with options. If you decide to skip the tests, you will
cause problems for other developers if you break the build, or the built system. If you
skip integrating your changes with the rest of the system, you will break the code-
line.This is too much work for a change that you may throw away in an hour, or a
day. Figure 16-2 shows still another option; you can check in changes at and revert at

Figure 16-1 .Each decision leads to more choices, until you pick the solution.
138 (SBCH16.fm) Private Versions (16)

each step. This generates many superfluous change events for the rest of the team,
and only gives you one the ability to retrace your changes one step at a time.

Even if you did put the effort into validating changes before checking them in, you
will be cluttering the version history with changes that are not salient to the main
change path. Since the version history for a component is important, it may be impor-
tant to keep the version history uncluttered with insignificant changes.

You might consider just doing all of the changes in your workspace and not checking
in any intermediate work. If you don’t check in any changes, you can’t back off
changes.You can take an ad-hoc approach to saving the state of your work at various
points in time by copying files or using some other mechanism, but then what you
are really doing is creating a minimalist version control system. It’s optimistic to
expect to develop a mechanism that gives you the features that you want reliably
without investing more work than is appropriate is optimistic.

You can also use private versions to test how integrating with the current state of the
codeline will work with your software. You can check your changes into your private
version, then catch up with the codeline, and then easily roll back if there is a prob-
lem.

The dilemma is that you want to use the tools of your trade, including version con-
trol, to create a stable, useful, codeline, but you want to do this privately.

Figure 16-2 .Using the Code Line for staging generates a lot of noise.

check in

Revert

check in
Private Versions (SBCH16.fm 6/14/02) 139

Use Caution

Being able to version control without publishing changes is one of the things
that you only miss when you don’t have it. When the practice isn’t established,
people often avoid the issue entirely. The times that I’ve seen this used in
practice are situations involving major refactorings, or developing proof of con-
cepts.

Being able to rollback bad ideas before everyone sees them is very helpful.

A Private History

Provide developers with a mechanism for check pointing changes at a granularity
that they are comfortable with. This can be provided for by a local revision control
area, Only stable code sets are checked into the project repository

Set up a developers workspace so that they can check in changes to a non-public area
when they are making an appropriate change. The mechanism should allow them to
also integrate their working code base with the current state of the active develop-
ment line. This private repository should use the same mechanisms as the usual ver-
sion control system so that the developers do not need to learn a new
meachanism.This allows developers to experiment with complex changes to the code
base in small steps, without breaking the codeline if an experiment goes awry. This
allow developers to make small steps in confidence, knowing that they can abandon
part of a change if it takes longer than they expect.

There are many ways to implement this. One way is to have an entire PRIVATE WORK-
SPACE (6) dedicated to a task. This is appropriate when we want to experiment with a
global change (for example, to an interface) and wants to evaluate the consequences
of the change to see if they are manageable in the time that they have. If your change
involves only a small portion of the source tree (one java package, or one directory)
you can map that part of the workspace to a ‘private’ repository, for example, a local
CVS repository, or a developer specific branch of the main repository that is not inte-
grated with the active line. You then redirect certain check ins to the private reposi-
tory. When you are done with your work, check the files into the main repository,
either by specifying the repository, or copying files from the test workspace to your
140 (SBCH16.fm) Private Versions (16)

real one. Be sure to follow all of the procedures in your standard codeline policy
before checking the code into the active codeline.

Some tools provide for promotion levels or stages. You can create private stages to
use version control and not publish changes to the rest of the team.

It is important to make sure that developers using Private Versioning remember to
migrate changes to the shared version control system at reasonable intervals. While
one way to implement this is to provide a separate source control repository for each
developer, in addition to the shared repository, this can also be implemented within
the framework of the existing revision control system. If the revision control mecha-
nism provides a means for restricting access to checked-in versions that are not yet
ready for use by others, we can use the common version control system as a virtual
Private Repository.

The important principle is to allow the developer to be allowed to use the version
control system to checkpoint changes in an granularity which meet their needs, with-
out any risk of the changes (which may be inconsistent) being available to anyone
else.
Private Versions (SBCH16.fm 6/14/02) 141

142 (SBCH16.fm) Private Versions (16)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 17
Release Line
You want to maintain an ACTIVE DEVELOPMENT LINE (5). You have released versions that
need maintenance and enhancements, and you want to keep the released code base
stable. This pattern shows you how to isolate released versions from current develop-
ment.

� � �� � �� � �� � �

How do you do maintence on released versions without interfering with your cur-
rent development work?

Once you release a version of a product or component, it may need to evolve inde-
pendently of your primary development. While it might be ideal from your perspec-
tive for your customers to simply update to new releases to get bug fixes, the reality

is that there are many circumstances where you need to make a fix based on the
already shipped version of the codeline. You may need to fix an urgent problem, and
the new release will not be ready in time. If your application has data-migration or a
complicated deployment process for it, your customers may not be willing or able to
upgrade immediately. You are often faced with the problem of how to conduct devel-
opment of a future release while at the same time responding in a timely manner to
all the many bug reports and enhancement requests that are inevitably going to be
logged against the active development.

You need to identify what code was part of the release, and what code is in the main
development stream. One way to identify what is in a release is by labeling the
release in the current codeline, shipping that snapshot and then continuing to work
on the mainline. Figure 17-1 illustrates this approach. Doing things this way does not
allow you to fix something in a fixed product independently of the mainline. While

you need to fix bugs on released products, the current development line may be
evolving in a direction that is quite different that the soon to be delivered release, and
it may not be easy to quickly deliver a fix.

You can create a branch when the product ships to isolate the release line from cur-
rent work. Then if there are fixes that apply to both the branch and the mainline, you
need to merge the changes, or duplicate the work. Figure 17-2 shows this situation.

Figure 17-1 .Doing all your work on the mainline

Release 2 work

Release
1

Release
2

Release 1 Work
144 (SBCH17.fm) Release Line (17)

You can put your new work on a branch, and ship the mainline. You then can merge
back. This means that most developers need to merge their work; hopefully the
released code won’t change too much over time. You may have more than one cus-
tomer, each with variations of the released software; you may need to keep track of
multiple releases that are derived from other releases. You can model this by the stair-
case structure in Figure 17-3. This structure makes it very hard to figure out what
code is common among the releases.

You can try to keep customers only on major releases.Critical bug-fixes and enhance-
ments need to be effected immediately, often well before the next major release is
ready to ship.

Maintenance effort (bug-fixes and enhancements) in the current release may be
incompatible with some of the functionality or refactoring already implemented in
the next release

Figure 17-2 .Create a Branch when you Ship

Figure 17-3 .Staircase of Dependent Branches.

Merge
Fixes

Release 1
Work

/Release 1 /Release 2patch

Release 2 work/main

1.0

2.0

/main

/Release1

/release2
Release Line (SBCH17.fm 6/14/02) 145

Linear Development

Mainline development has a number of advantages. It reduces complexity and
redundant effort. Some early stage companies work closely enough with their
few customers that they can focus development on what these customers
need, and bug fixes are simply additions to the codeline. You can label each
release point and then have your customers mover to the new release. They’ll
probably get some additional features, so they won’t mind, and all of your work
may be short term enough that you’ll be able to always ship your code.

With success and planning comes a circumstance where the main codeline
might not always be shippable, since the infrastructure needed to support a
new feature might not be ready until after the code is. Also, with more than one
customer, you may not be able to get your customer base to upgrade at the
same time.

You need a way to get let released code evolve independently of mainline
code so that you can do bug fixes.

Split maintence/release and active development into separate codelines. Keep each
released version on a release line. Allow the line to progress on its own for bug
fixes. Branch each release off of the mainline.

Rather than trying to accommodate maintenance of the current release and develop-
ment of the next release in the same codeline, split maintenance and development off
into separate codeline. All bug-fixes and enhancements to the current release take
place in the maintenance line, effort for the next major release takes place in the
development line. Ensure that changes in the maintenance line are propagated to the
active development line in a regular fashion. Figure 17-4 shows this structure.
146 (SBCH17.fm) Release Line (17)

Propagate bug fixes from the mainline to the release line where possible. Once the
mainline has progressed, you may still be making changes to the released line; Code
on the release line becomes dead-end code when that release is no longer supported.

When you are ready to ship, label the code on the mainline and branch. Fix any errors
on the released codeline on the branch, and merge any relevant changes back into the
mainline before the next release. All work for future releases goes on the mainline.

At release time branch all code, including third party code.

Further Reading

• Streamed Lines (Appleton et al. 1998) describes more branching patterns,
• Software Release Methodology by Michael Bays (Bays 1999) discusses various

types of codelines.

Figure 17-4 .Release Line

Rel 1
Work

1.0

Fixes

Rel 2
Work

2.0/main

/release1 /release2
Release Line (SBCH17.fm 6/14/02) 147

148 (SBCH17.fm) Release Line (17)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 18
Release-Prep Code Line
You're finishing up a release and also need to start continue development on the next
release. You want to maintain an ACTIVE DEVELOPMENT LINE (5).

� � �� � �� � �� � �

How do you stabilize a codeline for an impending release while also allowing new
work to continue on an active codeline?

Before a release is ready to ship, there is often much work to do to get the active
development line shippable. There are last minute bugs to fix, details related to
installation and packaging and other last minute details to tend to. It is best to not do
any major new work on the active development codeline while this clean up is going

on, since you don’t want to introduce any new problems. You will want to have very
restrictive check in and QA policies during this “clean-up” period.

One solution is to freeze development on the active development line until the
release stabilizes. You can institute a strict policy that only essential changes are made
to the codeline. If things go well, this may only take a day or so. But the stabilization
work may involve part of the team however, and there is new work to do for the next
release, so you really do not want to stop work at all. And if the code freeze lasts
longer than this is very wasteful of resources, and frustrating to developers who are
doing new work, since they will have to work without the version control system. If
people work on the changes without checking them in to the version control stream,
you lose all of the benefits of having a version control system, and out yourself at risk
of having chaos when the freeze is lifted.

Another possible solution is to branch the codeline into a release codeline, and do all
of your work on the branch. If you branch too early, you will have to do a lot of merg-
ing between the release line and the mainline. Branching gives you isolation, but at
the expense of added work in doing merges.

Developers want to get work done, and avoid merges. Management wants the cur-
rent code to be stable.

Idle Hands

Lots of places I’ve worked have instituted code freezes before releases. This is
a good idea in principle, but when the code freeze lasts days or weeks, it
seems like less of a good idea. The stated reason for freezing instead of doing
something that allows parallel work is that it is less work. Of course, it adds
frustration, and delays the release.

I’ve seen this so many times, often at the same time when there is lots of pres-
sure to deliver code. Version control tools offer the ability to allow concurrent
work, but they aren’t used often, or well.
150 (SBCH18.fm) Release-Prep Code Line (18)

Branch instead of Freeze

Create a release-engineering branch when code is approaching release quality. Fin-
ish up the release on this branch, and leave the mainline for active development.
The branch becomes the release branch.

You mark the release of a product with a branch. Instead of branching off immedi-
ately after release, branch before the release. This allows you to branch instead of
freeze. Instead of freezing the maine codeline during release engineering activities,
create a separate line for release integration and engineering and allow other devel-
opment to continue taking place on the development line.

Create the release engineering line when the code is approaching stability. The closer
to “done” code you create the branch, the less merging you will have to do between
this line and the mainline. The trade-off is that you wait longer, you may find your-
self in a code-freeze situation.

This anti-freeze (release-engineering) line becomes the release-maintenance after a
successful release. It still serves the same purpose of “sync and stabilize” but now it is
an ongoing effort that continues even after the release.

In reality, there may be a small “freeze” window -- as long as it takes to create a con-
sistent branch. If you can avoid this, all the better, but even if your “freeze” is short,
you are still ahead of where you were when you had to freeze until you ship and
release. Figure 18-1 illustrates this structure.

Changes can take place in each of the two codelines at the appropriate pace. Critical
fixes and enhancements can be implemented and delivered without immediately

Figure 18-1 .Release-Prep Code Line

Cleanup
Work

Release

Prepare for
Branching

New Work

Integrate Cleanup
with Mainline, if
appropriate
Release-Prep Code Line (SBCH18.fm 6/14/02) 151

impeding future development. Maintenance releases or “patches” can be periodically
released without severely impacting development on the next release. The Code Line
Owner of the development line can set a policy for how and when changes are prop-
agated from the maintenance line to the development.

Unresolved Issues

If only a few people are working on the next release, instead of starting a release prep
branch, start a Task Branch for the new work.

To keep the codeline in good shape while you are doing a potentially disruptive task,
consider using a TASK BRANCH (19). This pattern forms the basis for a RELEASE LINE (17).
152 (SBCH18.fm) Release-Prep Code Line (18)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter 19
Task Branch
Handling Long Lived Tasks

Some development tasks take a long time to implement, and intermediate steps are
potentially disruptive to an ACTIVE DEVELOPMENT LINE (5). This pattern describes how to
reconcile long term tasks with an active development line.

� � �� � �� � �� � �

How can your team make multiple, long term overlapping changes to a codeline
without compromising its consistency and integrity?

You usually want to use the version control system as a mechanism to keep the entire
team up to data on what everyone is doing. Under normal circumstances, you will
check in changes frequently. Some development tasks should not be integrated into

the mainline to share with the rest of the team until they are complete. For example,
you may be making a major change to an interface and you need to be sure that it
works before you publish it to the team.

When you are doing parallel development without controlling the interaction
between everyone’s concurrent changes you can end up with wasted effort and
rework. Most of the time you want to use the version control system as your commu-
nications mechanism, since you want to share your work with everyone as soon as
you think that it is ready, since frequent integration is a good way to improve global
stability. You also want to put your changes into version control as soon as is reason-
able to ensure that you have traceability and recoverability. Also, on a practical note,
often development systems do not have the same backup and recovery infrastructure
around them as the drives that contain the version control software.

Some changes would destabilize the active codeline if check them in. For example, a
major refactoring can’t easily be done in stages, yet you don’t want to wait a week
before checking in the complete set of changes. Also, since your version control sys-
tem is a good mechanism for communicating changes to other developers who are
working on the same task, you need a place to check your code into. The alternatives,
which include sharing files, and other mechanisms that bypass the version control
system, can easily cause you to get out of synchronization with each other, even if
your communication is good, which is often not the case because we get distracted.
Figure 19-1 illustrates this concept.

Another example of a situation where a small group of developers is working on a
task without that can cause conflict is if you are approaching a product release, but a
small part of your development team is working on a new feature for a subsequent
release. You want this subset of your team to share code changes using some sort of
version control system, but the changes cannot go into the active development line,
since they are not for this release. If only a small part of the team is working on these
changes, the overhead of creating a release line might be too great, since everyone is
doing work on the release line, and the mainline should remain in sync with it. With

Figure 19-1 .Some Tasks are for the future

/main
154 (SBCH19.fm) Task Branch (19)

some tools the only reliable way to synchronize both lines, is to check code into both
places. Figure 19-2 illustrates this.

A small team of developers working on a future task can have a more lax codeline
policy with respect to keeping there work synchronized with the active mainline
because they can communicate among themselves more efficiently than the larger
team can.

You need a way to allow a team of developers to work on a task that is paralled to the
mainline for a short period of time, while keeping all of the benefits of the version
control tools.

Parallel Lines

We were changing the persistence mechanism for our application. This had far
reaching implications. We were changing the mechanism because there were
problems with the existing one, so there were bug fixes going on as well. The
fact that there was some isolation at the module level between the persistence
code and the other parts of the system made this a bit easier.

By creating a branch with the files that we were updating, we could allow a
group of people to enhance the persistence mechanism while other work was
going on.

Figure 19-2 .Creating a Release Line too Early is Troublesome

1.0

/earlyRelease

/main
Task Branch (SBCH19.fm 6/14/02) 155

Use Branches for Isolation

Fork off a separate branch for each activity that has significant changes for a code-
line.

A branch is a mechanism for reducing risk. You can use a task branch as “a mecha-
nism for physically isolating riskier development ventures from the code base”
(Vance 1998).Once the activity is complete and all of its file changes have been tested,
checkin files on the activity branch. When the task in complete, merge with the main-
line. Michael Bays describes the scenario for a task branch (though not calling it by
that name) (Bays 1999):

It is common for a single developer to create a branch from the trunk in order to execute a
change that will require a non trivial amount of time and not be impeded by changes others
are making in the same files. As work in this developer branch continues, the source trunk will
continue to iterate through revisions with the work of others. Eventually, the developer will
want to take the files that she has changed and merge them back into the latest file versions on
the trunk.

You need to be sure that all of the code that has changed on the mainline since the
time you started your branch, still works with yours. Either merge the activity branch
into the appropriate codeline (as a single transaction). Otherwise notify the appropri-
ate codeline owner that the change is complete and ready to be merged and provide
the codeline-owner with any other necessary information for finding, merging, and
testing the change-task.

If your VCS supports ‘lazy branching’ where your branch inherits all the code from
the mainline unless it change on the branch, you can use a task branch when you
have to isolate a small amount of ‘future work’ from the mainline Figure 19-3 shows
this structure.

Figure 19-3 .Task Branch

tas
k1

/Task 1

/main
156 (SBCH19.fm) Task Branch (19)

Task branches are especially useful when you have multiple people sharing work
that needs to be integrated together. For this reason, you can also use a task branch
for integration prior to releasing a change to the active development line. You can
integrate a number of changes into the task branch, and then merge the task branch
back into the active development line when the changes pass your tests.

It is important to integrate changes from the active development line into the task
branch frequently. You want the final integration of the task branch with the active
codeline to go as smoothly as possible.
Task Branch (SBCH19.fm 6/14/02) 157

158 (SBCH19.fm) Task Branch (19)

Chapter 20
Referenced Patterns

This chapter provides a brief summary of patterns from other sources that we refer-
ence in this book.

 Named Stable Bases

Originally published in A Generative Development Process Pattern Language (Coplien
1995).

Intent: How frequently do you integrate? Stabilize system interfaces no more tha-
nonce a week. Other software can be changes and integrated more frequently (sum-
mary from summaries are from the Patterns Almanac (Rising 2000)).

Daily Build and Smoke Test

Originally published in A Generative Development Process Pattern Language (Coplien
1995).

Intent: How do you keep the changes from getting out of hand and contain the poten-
tial for errors in the build? At least daily, build the software, and perform a smoke test
to determine that the software is still usable.
Referenced Patterns (SBCH20.fm 6/14/02) 159

160 (SBCH20.fm) Referenced Patterns (20)

Chapter A
Bibliography

Adolph, Steve, Paul Bramble, Alistair Cockburn, and Andy Pols. 2003. Patterns for
Effective Use Cases. Boston, MA: Addison Wesley.

Alexander, C. 1979. A Timeless Way of Building: Oxford University Press.

Alexander, C., S. Ishikawa, and M. Silverstein. 1977. A Pattern Language: Oxford Uni-
versity Press.

Alexander, C., M. Silverstein, S. Angel, S. Ishikawa, and D. Abrams. 1975. The Oregon
Experiment: Oxford Universiy Press.

Allen, Thomas J. 1997a. Architecture and Communication among Product Develop-
ment Engineers. Cambridge, MA: MIT Sloan School. International Center for
Research on Management Technology.

———. 1997b. Organizational Structure for Product Development. Cambridge, MA:
MIT Sloan School. International Center for Research on Management Technology.

Allen, Thomas J., Breffni Tomlin, and Oscar Hauptman. 1998. Combining Organiza-
tional and Physical Location to Manage Knowledge Dissemination. Cambridge, MA:
MIT Sloan School. International Center for Research on Management Technology.

Alpert, Sherman R., Kyle Brown, and Bobby Woolf. 1998. The Design Patterns Smalltalk
Companion, The Software Patterns Series. Reading, Mass.: Addison-Wesley.

Appleton, Brad, Steve Berczuk, Ralph Cabrera, and Robert Orenstein. 1998. Streamed
Lines: Branching Patterns for Parallel Software Development. Paper read at Fifth
Bibliography (SBBibliography.fm 6/14/02) 161

Annual Conference on Pattern Languages of Programs, August 11-14, at Monticello,
IL.

Babich, Wayne A. 1986. Software Configuration Management : Coordination for Team Pro-
ductivity. Reading, Mass.: Addison-Wesley.

Bass, Len, Paul Clements, and Rick Kazman. 1998. Software Architecture in Practice, Sei
Series in Software Engineering. Reading, Mass.: Addison-Wesley.

Bays, Michael E. 1999. Software Release Methodology. Upper Saddle River, N.J.: Prentice
Hall PTR.

Beck, Kent. 2000. Extreme Programming Explained : Embrace Change. Reading, MA:
Addison-Wesley.

Berczuk, Stephen. 1994. Finding Solutions through Pattern Languages. IEEE Com-
puter 27 (12 (Dec. 1994)):75-76.

Berczuk, Stephen P. 1995. A Pattern for Separating Assembly and Processing. In Pat-
tern Languages of Program Design, edited by J. Coplien and D. Schmidt. Reading, MA:
Addison-Wesley.

———. 1996a. Organizational Multiplexing: Patterns for Processing Satellite Teleme-
try with Distributed Teams. In Pattern Languages of Program Design, edited by J. Vlis-
sides, J. Coplien and N. Kerth. Reading, MA: Addison-Wesley.

Berczuk, Steve. 1996b. Configuration Management Patterns. Paper read at Third
Annual Conference on Pattern Languages of Programs, at Monticello, IL.

Berczuk, Steve, and Brad Appleton. 2000. Getting Ready to Work: Patterns for a
Developer's Workspace Paper read at Pattern Languages of Programs, at Monticello,
IL.

Booch, Grady. 1996. Object Solutions : Managing the Object-Oriented Project. Menlo
Park, Ca.: Addison-Wesley Pub. Co.

Booch, Grady, James Rumbaugh, and Ivar Jacobson. 1999. The Unified Modeling Lan-
guage User Guide, Addison-Wesley Object Technology Series. Reading, MA: Addison
Wesley Longman.

Brooks, Fred. 1975. The Mythical Man Month. Reading, MA: Addison Wesley.

Brooks, Frederick P. 1995. The Mythical Man-Month : Essays on Software Engineering.
20th Anniversary ed. Reading, Mass.: Addison-Wesley Pub. Co.
162 (SBBibliography.fm) Bibliography (A)

Brown, William J., Hays W. McCormick, and Scott W. Thomas. 1999. Antipatterns and
Patterns in Software Configuration Management. New York: Wiley.

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. 1996. Pattern-Oriented Software Architecture: A System of Patterns. Chichester,
England: John Wiley & Sons.

Cabrera, Ralph, Brad Appleton, and Steve Berczuk. 1999. Software Reconstruction:
Patterns for Reproducing the Build. In Proccedings of the Sixth Annual Conference on
Pattern Languages of Program Design. Monticello, IL.

Cockburn, Alistair. 2000. Writing Effective Use Cases, The Crystal Series for Software
Development. Boston: Addison-Wesley.

Conradi, Reidar, and Bernhard Westfechtel. 1998. Version Control Models for Soft-
ware Configuration Management. ACM Computing Surveys 30 (2):232-278.

Coplien, James O. 1995. A Generative Development Process Pattern Language. In
Pattern Languages of Program Design. Reading, MA: Addison-Wesley.

Coplien, James O., and Douglas Schmidt, eds. 1995. Pattern Languages of Program
Design. Reading, MA: Addison Wesley.

Dart, Susan. 1992. The Past, Present, and Future of Configuration Management: Soft-
ware Engineering Institute.

DeMarco, Tom, and Timothy R. Lister. 1987. Peopleware : Productive Projects and Teams.
New York, NY: Dorset House Pub. Co.

Dikel, David M., David Kane, and James R. Wilson. 2001. Software Architecture : Orga-
nizational Principles and Patterns. Upper Saddle River, NJ: Prentice Hall.

Fisher, Roger, William Ury, and Bruce Patton. 1991. Getting to Yes : Negotiating Agree-
ment without Giving In. 2nd ed. New York, N.Y.: Penguin Books.

Fogel, Karl Franz, and Moshe Bar. 2001. Open Source Development with Cvs. 2nd ed.
Scottsdale, AZ: Coriolis Group Books.

Fowler, Martin. 1999. Refactoring: Improving the Design of Existing Code. Edited by J. C.
Shanklin, Object Technology Series. Reading, MA: Addison-Wesley.

Fowler, Martin, and Matthew Foemmel. 2002. Continuous Integration 2001 [cited
March 7 2002]. Available from http://www.martinfowler.com/continuousIntegra-
tion.html.
Bibliography (SBBibliography.fm 6/14/02) 163

Gabriel, Richard P, and Ron Goldman. 2000. Mob Software: The Erotic Life of Code :
Deamsongs Press.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.

Gause, Donald C., and Gerald M. Weinberg. 1990. Are Your Lights On? How to Figure
out What the Problem Really Is. New York, NY: Dorset House.

Goldfedder, Brandon. 2002. The Joy of Patterns : Using Patterns for Enterprize Develop-
ment, The Software Patterns Series. Boston: Addison-Wesley.

Grinter, Rebecca. 1995. Using a Configuration Management Tool to Coordinate Soft-
ware Development. Paper read at ACM Conference on Organizational Computing
Systems, August 13 - 16 1995, at Milpitas, CA.

Harrison, Neil, Brian Foote, and Hans Rohnert, eds. 2000. Pattern Languages of Pro-
gram Design 4. Edited by J. M. Vlissides, Software Patterns Series. Reading, MA: Addi-
son Wesley Longman.

Highsmith, Jim. 2002. Agile Software Development Ecosystems. Edited by A. Cockburn
and J. Highsmith, Agile Software Development Series. Boston, MA: Pearson Education.

Hightower, Richard, and Nicholas Lesiecki. 2002. Java Tools for Extreme Programming :
Mastering Open Source Tools Including Ant, Junit, and Cactus. New York Chichester:
Wiley.

Hunt, Andrew, and David Thomas. 2000. The Pragmatic Programmer : From Journeyman
to Master. Reading, Mass: Addison-Wesley.

Hunt, Andy, and Dave Thomas. 2002a. Software Archaeology. IEEE Software 19 (2):20-
22.

———. 2002b. Ubiquitous Automation. IEEE Software 18 (1):11-13.

Jeffries, Ron, Ann Anderson, and Chet Hendrickson. 2000. Extreme Programming
Installed. Boston, MA: Addison-Wesley.

Karten, Naiomi. 1994. Managing Expectations. Working with People Who Want More, Bet-
ter, Faster, and Sooner. New York, NY: Dorset House.

Kernighan, Brian W., and Rob Pike. 1999. The Practice of Programming, Addison-Wesley
Professional Computing Series. Reading, MA: Addison-Wesley.

Krutchen, Philippe. 1995. The 4+1 Model View of Architecture. IEEE Software 12
(6):42-50.
164 (SBBibliography.fm) Bibliography (A)

Leon, Alexis. 2000. A Guide to Software Configuration Management . Norwood, MA:
Artech House.

Manns, Mary Lynn, and Linda Rising. 2002. Introducing Patterns into Organizations
2002 [cited May 23 2002]. Available from http://www.cs.unca.edu/~manns/intro-
patterns.html.

Martin, Robert C., Dirk Riehle, and Frank Buschmann. 1998. Pattern Languages of Pro-
gram Design 3, The Software Patterns Series. Reading, Mass.: Addison-Wesley.

McConnell, Steve. 1993. Code Complete : A Practical Handbook of Software Construction.
Redmond, Wash.: Microsoft Press.

———. 1996. Rapid Development, Taming Wild Software Schedules. Redmond, WA:
Microsoft Press.

———. 2000. What's in a Name? IEEE Software 17 (5):7-9.

———. 2002. Closing the Gap. IEEE Software 19 (1):3-5.

Mikkelsen, Tim, and Suzanne Pherigo. 1997. Practical Software Configuration Manage-
ment : The Latenight Developer's Handbook. Upper Saddle River, NJ: Prentice Hall PTR.

Myers, Glenford J. 1979. The Art of Software Testing. New York: Wiley.

Olson, Don Sherwood, and Carol L. Stimmel. 2002. The Manager Pool : Patterns for
Radical Leadership, The Software Patterns Series. Boston: Addison-Wesley.

Oshry, Barry. 1996. Seeing Systems. Unlocking the Mysteries of Organizational Life. San
Francisco, CA: Barrett-Koehler.

Rising, Linda. 2000. The Pattern Almanac 2000, Software Patterns Series. Boston: Addi-
son-Wesley.

Roche, Ted, and Larry C. Whipple. 2001. Essential Sourcesafe: Hentzenwerke Corpora-
tion. Original edition, June 1, 2001.

Schmidt, Douglas C., Michael Stal, Hans Rohnert, and Frank Buschmann. 2000. Pat-
tern-Oriented Software Architecture : Patterns for Concurrent and Distributed Objects. 2nd
ed. New York: Wiley.

Shaw, Mary, and David Garlan. 1996. Software Architecture : Pespectives on an Emerging
Discipline. Upper Saddle River, N.J.: Prentice Hall.

Tichy, Walter F. 1985. A System for Version Control. Software Practice and Experience 15
(7).
Bibliography (SBBibliography.fm 6/14/02) 165

Ury, William. 1993. Getting Past No : Negotiating Your Way from Confrontation to Cooper-
ation. Rev. ed. New York: Bantam Books.

Vance, Stephen. Advanced Scm Branching Strategies 1998 [cited. Available from http://
svance.solidspeed.net/steve/perforce/Branching_Strategies.html.

Vlissides, John. 1998. Pattern Hatching : Design Patterns Applied, The Software Patterns
Series. Reading, Mass: Addison-Wesley.

Vlissides, John, James Coplien, and Norm Kerth, eds. 1996. Pattern Languages of Pro-
gram Design 2. Reading, MA: Addison-Wesley.

Weigers, Karl E. 2002. Fightin' Words. StickyMinds.com.

Weinberg, Gerald M. 1986. Becoming a Technical Leader. New York, NY: Dorset House.

———. 1991a. Quality Software Management. New York, N.Y.: Dorset House Pub.

———. 1991b. Quality Software Management: Volume 1 Systems Thinking. New York,
N.Y.: Dorset House Pub.

———. 1993. Quality Software Management, Volume 2: First Order Measurement. New
York, N.Y.: Dorset House Pub.

———. 2002. More Secrets of Consulting : The Consultant's Tool Kit. New York: Dorset
Horse Pub.

White, Brian. 2000. Software Configuration Management Strategies and Rational Clearcase
: A Practical Introduction, Addison-Wesley Object Technology Series. Boston, MA: Addi-
son-Wesley.

Whitgift, David. 1991. Methods and Tools for Software Configuration Management, Wiley
Series in Software Engineering Practice. Chicester, England: Wiley.

Wingerd, Laura, and Christopher Seiwald. 1998. High-Level Best Practices

in Software Configuration Management. Paper read at Eight International Workshop

on Software Configuration Management, July, 1998, at Brussels.
166 (SBBibliography.fm) Bibliography (A)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter B
SCM Resources On-line

This section describes some useful SCM resources available on the World-Wide Web.

The Configuration Management Yellow Pages

• http://www.cmtoday.com/yp/configuration_management.html

If you only go one place for the most comprehensive set of links on the topic of soft-
ware configuration management, this is the place to go. It has everything (or at least it
always seems to) and is updated regularly. It used to be maintained by Andre van der
Hoek, but has since been passed on to the folks who host the CM today newsletter
and cmtalk mailing list

CM Crossroads - Online Community and Resource Center for CM Professionals

• http://www.cmcrossroads.com/

If you only go two places for the most comprehensive set of links on the topic of soft-
ware configuration management, this is the second place to go. It hasn’t been around
as long as the CM Yellow Pages, but it is very comprehensive, has a regular newslet-
ter, and growing list of resource links on several topics related to SCM as well as
SCM.

CM Today - Daily Configuration Management News

• http://www.cmtoday.com/

A daily CM newsletter and resource site updated daily. The same site houses the CM
Yellow pages and CM job listings. It also has a web page where you can subscribe to
the cmtalk mailing list, and view the message archives of the mailing list.

UCM Central - Unified Configuration Management

• http://www.ucmcentral.com

Another good site with resources and a portal and links to information about various
tools and vendors. It also contains several informative articles, diagrams, and tem-
plates

ACME - Assembling Configuration Management Environments (for Software)

• http://acme.bradapp.net

This is the web site created by one of the authors of this book in their quest to
uncover and disseminate SCM patterns and best practices. The site has a rather
extensive list of SCM definitions, a set of SCM recommended readings, several
papers and presentations by the authors on the subject of SCM patterns and best
practices, and a very respectable collection of links to SCM research and practice
(unfortunately, the links are very much in need of some serious updating).

The Software Engineering Institute’s SCM Publications

• http://www.sei.cmu.edu/legacy/scm/

Some links to general resources, FAQs, and best of all, the SEI CM documents
archive. Although they are somewhat dated, most of these papers are excellent, and
many are considered “classics” in the field. Of particular note are the following
papers by Susan Dart and/or Peter Feilir:

• The Spectrum of Functionality in CM Systems, by Susan Dart
• Concepts in CM, by Susan Dart
• The Past, Present and Future of CM, by Susan Dart
• Configuration Management Models in Commercial Environments, by Peter

Feiler
• Transaction-Oriented CM: a Case Study, by Peter Feiler and Grace Downey
168 (SBresources.fm) SCM Resources On-line (B)

Steve Easterbrook's Configuration Management (CM) Resource Guide

• http://www.cmiiug.com/sites.htm

A great resource for addresses, points of contacts, and titles in a rather plain FAQ-like
format. The parent site is also the home of the Institute for Configuration Manage-
ment (www.icmhq.com)

The Software Configuration Management FAQ

• http://www.daveeaton.com/scm/CMFAQ.html

A classic, compiled and maintained by Dave Eaton, who put together the first such FAQ
for the comp.software.config-mgmt Usenet newsgroup. The FAQ actually consists of three
separate FAQs: one on SCM in general, one on version control and SCM tools, and another
on problem-tracking tools.

The Association for Configuration and Data Management

• http://www.acdm.org/

Software Engineering Resource List for Software Configuration Management

• SCM - http://wwwsel.iit.nrc.ca/favs/CMfavs.html

A very nice SCM site from the Software Engineering Group (SEG) at the Institute for
Information Technology

R.S. Pressman and Associates Software Engineering Resources for SCM

• http://www.rspa.com/spi/SCM.html

Roger Pressman’s site of SCM liks for software engineering (Pressman is the author
of several well known software engineering books).

SEweb Software Configuration Management resources at Flinders University

• http://see.cs.flinders.edu.au/seweb/scm/

Pascal Molli’s “CM Bubbles” SCM resources page

• http://www.loria.fr/~molli/cm-index.html
SCM Resources On-line (SBresources.fm 6/14/02) 169

The Usenet newsgroup comp.software.config-mgmt

• news:comp.software.config-mgmt

These can now also be read, searched, and posted to using Google:

• http://groups.google.com/groups?hl=en&lr=&group=comp.software.con-
fig-mgmt.
170 (SBresources.fm) SCM Resources On-line (B)

Software Configuration Management Patterns: Effective Teamwork, Practical Integration
by Steve Berczuk with Brad Appleton. Copyright 2002 Addison-Wesley, Boston, MA. All rights reserved
Chapter C
Tool Support for SCM Patterns

with assistance from Bob. Ventimiglia (http://www.bobev.com/)
This section describes how the SCM patterns in this book map to the concepts imple-
mented by several commonly used software version control (VC) tools. The intent is

TABLE 1-1. Some Commonly Used Version Control Tools

Tool Vendor Web Site

VSS - Visual Source Safe Microsoft http://msdn.microsoft.com/ssafe/

CVS - the Concurrent

Versions System

CVS is Open Source - develop-

ment is hosted by Collab.Net

http://www.cvshome.org/

Perforce Perforce Software http://www.perforce.com/

BitKeeper BitMover Inc. http://www.bitkeeper.com/

AccuRev AccuRev Inc. http://www.accurev.com/

not to give the operational details for a “cookbook” or “HowTo” but to instead refer
to the tool-specific mechanisms, and how they work together to support our SCM
patterns. This should provide a conceptual base for looking up detailed usage
instructions in the product documentation.

For each tool, its basic concepts and terminology are briefly described in order to pro-
vide a high-level overview of how to use it to perform the following common activi-
ties:

• Create a PRIVATE WORKSPACE (6)
• Configure and populate it from a REPOSITORY (7) or from a codeline
• Create a change-task and/or a TASK BRANCH (19)
• Update the workspace with the latest state of the codeline
• Perform a TASK LEVEL COMMIT (11) of the changes from the workspace into the

codeline
• Create a new codeline (for a MAINLINE (4), an ACTIVE DEVELOPMENT LINE (5), a

RELEASE LINE (17), a RELEASE-PREP CODE LINE (18), or a THIRD PARTY CODELINE
(10))

• Create a label or version-identifier for one of the NAMED STABLE BASES (20)

ClearCase Rational Software http://www.rational.com/products/clearcase/

UCM - Unified Change
Management Rational Software http://www.rational.com/products/clearcase/

CM Synergy Telelogic http://www.telelogic.com/products/synergy/

StarTeam Starbase http://www.starbase.com/products/starteam/

PVCS Dimensions Merant PVCS http://www.merant.com/pvcs

PVCS Version Manager Merant PVCS http://www.merant.com/pvcs

MKS Integrity MKS Inc. http://www.mks.com/products/sie/

TABLE 1-1. Some Commonly Used Version Control Tools

Tool Vendor Web Site
172 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

VSS - Visual Source Safe

VSS is one of the more commonly used VC tools among those using a Microsoft-

based integrated development environment (IDE) such as Visual C++. Although it
has a nice GUI and very seamless integration with the programming language envi-
ronment, VSS is among the less capable tools described here. VSS has relatively lim-
ited support for branching and parallel development. It is not intended for projects
which regularly require multiple codelines.

A repository in VSS corresponds to a database which holds one or more master
projects. VSS supports “project-oriented” operations that operate on all selected files,
or all the files defined to be in a specified project. A master project is simply a VSS
project which holds the master copies of a set of files and their latest versions (it also
serves as the mainline).

A development workspace is created in VSS by associating a project with a working
directory.

The working directory is populated by performing a project-oriented get operation to
retrieve the latest versions of a project’s files into the working directory for read-only
access. A checkout operation is used to copy a writable copy of a file into the working
directory.

The working directory may be updated with the latest project versions by doing
another get project operation from the master (or codeline) project into the working
directory.

TABLE 1-2. Mapping of SCM pattern concepts to VSS concepts

SCM Pattern concept
name VSS concept name Comments

Repository master project

Development Workspace working directory

Codeline share & branch see also “pin”

Change Task N/A

Workspace Update get project from the master/codeline project into the

working directory

Task-level Commit checkin project

Task Branch N/A

Label label project
Tool Support for SCM Patterns (SBtool-appendix.fm 6/14/02) 173

Changes from the working directory may be “committed” to the codeline by doing a
checkin project operation from the working directory into the master (or codeline)
project where the latest versions of the project are stored for that codeline.

VSS doesn’t have a separate notion of a change-task, it relies upon project operations
in the working directory to be performed in task order. And since branching in VSS is
limited, branches are almost never created for the purpose of a single task.

A new codeline is created for a project by “sharing and branching” the files in that
project to create a new copy of that project:

• The share operation (formerly called “pin”) links and copies the selected file
versions from the master project into a new project for the new codeline.

• The branch operation makes sure the selected files are copies (rather than
links) and may have their contents revised and evolved independently of
the project from which they were initially shared.

A new label is created by performing the label operation on the selected set of files in
the project.

Caveats for using VSS:

• The get operation works properly for a workspace update only when you
check out the files you want to change before making your local changes to
them. If you modify your local copies, but don’t invoke the get operation
until just before you are ready to check them in, then VSS wont know that
your locally modified files were checked out before other versions that were
checked in after you made your changes (but before you checked the files
out). If you make sure to checkout the files before you make changes to your
local copies, VSS will know to perform the merge operation for any files
that you changed that also changed in the codeline

• VSS doesn’t effectively support a branching depth of more than 2 levels. If
you do this, VSS wont remember the full merge ancestry more than one
level deep and merging and reconciling changes back more than one level
will be more difficult.
174 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

CVS - The Concurrent Version System

CVS is OpenSource software and is probably one of the most widely known and used

version control tools in common use today. CVS supports the majority of these pat-
tern concepts using the copy-modify-merge model:

• Copy - A developer sets up a working directory and requests a working
copy of the files in the project by checking out files from the project into the
working directory. The syntax would be “checkout <options> <module-name>”
(or “update <options> <codeline-name>” to populate the workspace with the
latest files from the codeline).

• Modify - The developer edits any working copies of files in the working
directory using the “checkout” command

• Merge - the developer performs a “commit” operation to checkin their mod-
ifications to the repository

The main commands used are tag, checkout, update, and commit. One typically uses the
“-R” option with the update, commit, and tag commands to recursively apply to all
files in the working directory. Branches for a codeline or a task branch are created
using the “tag” command with the “-b” option. The “update” command synchronizes
the developer’s workspace with the latest state of the named codeline. When the time
comes to create a label (or, if desired, a checkpoint), the “tag” command can again be
used (this time without the “-b” option).

TABLE 1-3. Mapping of SCM pattern concepts to CVS concepts

SCM Pattern concept name CVS concept name Comments

Repository Repository also known as CVSROOT

Development Workspace Working Directory or

Working Copies

create using “cvs checkout -R ...” or “cvs

update -R ...”; also see “cvs export”

Codeline branch create using “cvs tag -b”

Change Task N/A

Workspace Update update “cvs update”

Task-level Commit commit “cvs commit”

Task Branch branch create using “cvs tag -b”

Label tag see also rtag

Third Party Codeline vendor branch Use “cvs import -b”
Tool Support for SCM Patterns (SBtool-appendix.fm 6/14/02) 175

As a special case, CVS was specifically designed to support the concept of a “vendor
branch” (a THIRD PARTY CODELINE (10)). The “import” command was tailor made for this
purpose!

Some caveats for using CVS:

• CVS doesn’t have as nice GUI support for branching and merging that
many of the commercial tools have (but other OpenSource GUI’s exist and
more seem to be written every year). This places the burden upon you to
mentally draw the visual picture of the codeline and branching structure in
your mind.

• CVS also isn’t quite as expert at tracking merge-history as some of the more
advanced commercial tools. If a version has been merged, and a particular
set of changes within the file were intentionally left unchanged (or changed
differently), then subsequent merges will continue to present those same
changes, even though the version they came from already had its differ-
ences “reconciled.” Merge technology in many of the more capable version
control tools know not to look at the contents of changes for versions that
are already part of the “merge ancestry” of the current version.
176 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

Perforce

Perforce is a very commonly used, simple but powerful commercial VC tool with
outstanding support for branching and merging. It bills itself the “fast software con-
figuration management system” and prides itself on performance, and distributed
TCP/IP client/server operation.

A repository in Perforce is called a depot. The Perforce server centrally manages
access to the depot from connecting clients.

Perforce workspaces are called a client workspace and are configured by specifying a
client spec to create a client view in the workspace. A codeline is called a branch in Per-
force (as is a task branch). Perforce tracks the changes between parent and child
branches, so it knows when a file version has already been merged and reconciled or
not.

Perforce uses an “atomic change transaction” model where an operation either suc-
ceeds on all files involved in an operation or else on none of them (an unexpected
interrupt should never create a partially completed update or commit). Perforce’s
branches (and resulting branch tree) are depot-wide rather than file-specific. This
makes for a conceptually powerful branching model for managing parallel develop-
ment with multiple codelines. (Other VC tools achieve this result with “projects” or
“workspaces” or “streams” using a hierarchical structure.) Perforce also has a means
of allowing configurable change review notifications, daemons, and triggers to add
customized checks and verification where desired.

TABLE 1-4. Mapping of SCM patterns concepts to Perforce concepts

SCM Pattern concept name Perforce concept name Comments

Repository depot

Development Workspace client workspace and

client spec

p4 client and p4 sync

Codeline branch p4 branch and p4 integrate

Change Task changelist also see jobs

Workspace Update sync p4 sync and p4 resolve

Task-level Commit submit p4 submit

Task Branch branch p4 branch and p4 integrate -b

Label label p4 label and p4 labelsync
Tool Support for SCM Patterns (SBtool-appendix.fm 6/14/02) 177

A Perforce workspace is setup by appropriately setting the P4PORT and P4CLIENT
environment variables, and running “p4 client” to edit the client spec to the desired
client view.

Once the workspace is setup and configured, “p4 sync” will populate the workspace
with read-only copies of the latest files selected by the client spec. Changes are made
by using the “p4 edit” command to obtain a writable copy of a file to modify.

The “p4 sync” command is also used to do a workspace update. Checked-out files
will not be modified by “p4 sync.” A “p4 resolve” command must be used to reconcile
the differences between the checked-out files and the latest versions in the codeline.

Files revised with the edit, add, and delete commands are added to a changelist that
Perforce maintains for your workspace. Those changes can be committed to the depot
using the “p4 submit” command. If any of your files aren’t the most recent version on
the codeline, you will get a submit error. Submit errors and merge conflicts are
resolved using the “p4 resolve” command. You can use “p4 resolve -n” to see which
files need to be resolved.

Branches are created using “p4 integrate.” The integrate command can also be used
with a branch spec to make the branch name automatically remember the mappings
for the branched files. (This is convenient to use for codelines and task-branches
when you have planned for them in advance.)

The “p4 label” command will create labels for releases, builds, and checkpoints. The
“p4 labelsync” command can revise the set of files belonging to a label.
178 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

BitKeeper

BitKeeper bills itself as the “distributed” scalable SCM system. It also exhibits excel-

lent performance and reliability. Rather than a client/server model, BitKeeper instead
uses a fully replicated peer-to-peer model of operation which allows for fully discon-
nected use from the “master” repository. BitKeeper provides triggers that allow for
customization of the most common repository-wide and file-specific operations.

The key to understanding BitKeeper’s operational model is to understand that every
BitKeeper workspace is also a repository. Changes, in the form of change-sets, are
made in a workspace, and developers can propagate change-sets back and forth
between workspaces using push and pull operations. All change-set operations are
atomic in BitKeeper.

Due to this simple but powerful model of distributed workspaces as repositories for
transmitting and receiving change-sets, both codelines and task-branches can be rep-
resented as workspaces in BitKeeper. BitKeeper workspaces operate like an unnamed
branch. With BitKeeper, you plan your codelines and create a hierarchy of integration
workspaces for each codeline in your hierarchy. You don’t have to create branches in
addition to codelines: when a change-set is pulled from another repository, the

TABLE 1-5. Mapping of SCM pattern concepts to BitKeeper concepts

SCM Pattern concept name BitKeeper concept name Comments

Repository master repository

Development Workspace developer repository create with “bk clone”

Codeline integration repository also see Line of Development (LOD)

Change Task change-set use “bk citool” or “bk commit”;

also see “bk revtool”

Workspace Update pull and resolve use “bk pull” and “bk resolve”

Task-level Commit commit and push use “bk citool”, “bk commit” and “bk push”;

also see “bk ci”

Task Branch developer repository also see Line of Development (LOD)

Label change-set, also a tag use “bk tag”; also see “bk commit -s”

Checkpoint change-set, also a tag or just use “bk unpull” to rollback to previ-

ous state after an unsuccessful “bk pull”
Tool Support for SCM Patterns (SBtool-appendix.fm 6/14/02) 179

receiving workspace knows at that time which file had concurrent changes creates
branches only for those files. (Think of it as “branch on demand”).

A codeline corresponds to an integration repository used for the purpose of pulling
in change-sets and then pushing them to higher-level “codelines” in the hierarchy. A
task-branch corresponds to a development repository for a single development task,
allowing for private local changes to be made which won’t be seen by other reposito-
ries until they choose to “pull” them in.

So developers don’t need to keep track of both a task-branch and a workspace. They
just work in their workspace, and after their changes are done, BitKeeper takes care
of worrying whether or not any files need to be branched. This eliminates the need in
a lot of other VC tools to have merges between branches that don’t change the file
contents. This, combined with BitKeeper’s merging technology makes it very easy in
BitKeeper to find the change-set that first introduced a particular line of code that
was propagated across several codelines.

Another important aspect of BitKeeper is that a change-set is repository wide: it not
only captures all the changes, but the context of the changes as well (the state of the
repository in which the changes were made). This lets a change-set also act as a label
or a checkpoint. It also means BitKeeper is “time-safe” in its ability to track the histor-
ical evolution of change-sets as they are pushed and pulled throughout a “promotion
hierarchy” of workspaces.

Like most of the other tools described her, Bitkeeper may be used via a GUI or from
the command line. The typical developer scenario for making a change is:

Create a new workspace using “bk clone” from the parent repository (or use an exist-
ing workspace without any pending changes). One can use the “bk get” or “bk edit”
operations to populate and access files in the repository to make changes (get obtains
read-only copies of files whereas edit obtains writable copies).

Use “bk pull” to update your workspace with the latest changes from the parent
repository (the “codeline”). Use “bk resolve” immediately afterward to merge and
resolve any resulting conflicts from the pull operation.

When changes are complete, the “bk citool” operation will check them in to your local
repository. The “bk commit” operation will then create a change-set for your changes.
The “bk push” operation will then propagate the changes back to the parent reposi-
tory.

Create labels using “bk tag” or with the “-s” option to the commit operation.
180 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

AccuRev

AccuRev is a more recent VC tool offering that is not as well known as most of the
other tools described here. Like Perforce, AccuRev uses the term depot to refer to a

repository. Also like Perforce, AccuRev prides itself on performance, distributed
TCP/IP client/server operation, and atomic change-transactions (as well as inte-
grated issue tracking).

One of AccuRev’s distinguishing features is that it is TimeSafe: it doesn’t just version
all your data, it also versions all your metadata. So in addition to being able to track
and reproduce prior contents of files, it can also track and reproduce prior definitions
of labels (which it calls checkpoints) and streams, as well as other AccuRev metadata.

Central to understanding AccuRev is its very simple but powerful notion of a stream.
AccuRev streams can be used as codelines, workspaces, and labels. An AccuRev
stream is a logical set of files and file versions in the depot. An AccuRev workspace is
simply a place in which you perform work on a stream.

Streams may be static or dynamic. Static streams may not have their contents
changed and may serve as known stable configurations or even fill the same purpose
as a label. Dynamic streams can have their contents changed in a workspace.

TABLE 1-6. Mapping of SCM pattern concepts to AccuRev concepts

SCM Pattern concept name AccuRev concept name Comments

Repository depot

Development Workspace workspace accurev mkws and accurev mksnap

Codeline stream also see backing stream and base stream

Change Task transaction also see workspace stream

Workspace Update update See also the pop command and merge -o

Task-level Commit promote promote -k moves changes from the work-

space stream so they are visible in the code-

line

Task Branch workspace stream also see dynamic stream

Label real version See also “virtual versions” and “snapshot

streams”

Checkpoint checkpoint create using the ‘keep’ command
Tool Support for SCM Patterns (SBtool-appendix.fm 6/14/02) 181

Dynamic streams may be linked together in a hierarchical fashion to create a promo-
tion hierarchy for workflow and integration. The topmost stream in the hierarchy is
called the “base stream” and serves as a “mainline.” Other parent streams serve as a
“backing stream” to their child streams and provides a starting point off the mainline
for other development projects (codelines) that will be long-lived. The child streams
are “workspace streams” where developers make their changes to the codeline.

So, in AccuRev, a base stream acts as a mainline, a backing stream acts as a codeline, and
a workspace stream acts as both a change-task and a task-branch (with the changes in
the stream associated with a transaction). A static stream is a snapshot that may serve
as a label.

AccuRev also has “real versions” and “virtual versions.” A real version is created any-
time a stream is checkpointed using the keep command. A virtual version is an alias
for a real version, but allows the name of the virtual version to be used as the corre-
sponding real version evolves dynamically over time. So the history of a virtual ver-
sion is a progression of real version names and their sequential numbers.

AccuRev may be used via a GUI or from the command line. The typical developer
scenario for making a change is:

Create your workspace using the “accurev mkws” command. Then edit files at will in
your workspace stream

To update your workspace, do an “accurev update” followed by an “accurev merge -o”
to resolve any resulting conflicts.

To commit your changes, do an “accurev keep -m” to create a checkpoint of your
stream, then do “accurev promote -k” to commit your changes from the workspace
stream to its backing stream.
182 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

ClearCase - base functionality (non-UCM)

ClearCase is among the more popular and more sophisticated version control tools

on the market. Like Perforce, ClearCase also has very conceptually powerful parallel
development and branching capabilities. ClearCase has a “base” option which lets
you role your own process and policies based on the framework it provides, as well
as a “UCM” option which supports Rational’s “Unified Change Management” for
activity-based SCM using higher-level concepts than base clearcase alone.

ClearCase is one of the most configurable tools on the market, providing customiz-
able triggers for just about every operation imaginable. One thing that ClearCase
does which most other VC tools do not is that it version is directories as well as files.
That means it remembers which files participated in which version of a particular
directory.

The base ClearCase option does not directly support the notion of a change-task,
although task-branches are commonly used for this purpose. The ClearCase GUI on
Windows platforms supports something called “Private Branches” and “View Profiles”
which are a way of automating support for task branches and creating workspaces
with the proper configuration of versions from the project branch. Using private
branches, the typical development scenario is to:

TABLE 1-7. Mapping of SCM pattern concepts to base ClearCase concepts

SCM Pattern concept name
base ClearCase
concept name Comments

Repository Versioned Object

Base (VOB)

Development Workspace view and config-spec,

also view profile

cleartool mkview, cleartool edcs,

Make Branch with View Profile

Codeline project branch cleartool mkbrtype, mkbranch config-spec

rules, View Profiles

Change Task N/A

Workspace Update findmerge cleartool findmerge, MergeManager

Task-level Commit findmerge cleartool findmerge, MergeManager

Task Branch private branch cleartool mkbrtype, Make Private Branch

Label label cleartool mklbtype, cleartool label
Tool Support for SCM Patterns (SBtool-appendix.fm 6/14/02) 183

Create a view, using an appropriate view profile for the desired project. This will also
ask whether or not a private branch should be used.

Perform checkouts in the view (and checkins if using a task-branch) to make the nec-
essary changes.

“Finish” the private branch by merging the changes back into the codeline

From the command-line, without private branches, the typical scenario is:

Create a view using the mkview command.

Create a branch (if desired) using the mkbrtype command.

Configure the view to select the appropriate versions using edcs or setcs.
NOTE: the above three steps are typically automated and simplified into a single script or
batch-file that takes a “task” name (to use as part of the name for the view and branch) and
some kind of “project” identifier to determine the view configuration. The details of where the
view’s file storage is created, and which specific configuration rules to use are often encapsu-
lated into this script so the typical developer doesn’t have to worry about those details.

Perform checkouts and (if using a task-branch) checkins as desired. If you are work-
ing on a task-branch, any checkins are effectively private versions that are captured
in the VOB for posterity, but appear only on your private branch and not in the code-
line.

When desired, update the view using the findmerge command (typically with the -flat-
est or -fversion option). This is not necessary if your view is a dynamic view selecting
the /LATEST versions of the codeline. ClearCase’s virtual file systems ensures that the
versions in a dynamic view are always synchronized with the /LATEST versions spec-
ified by the view’s config-spec. Snapshot views, and views which select a labeled
state of the codeline (rather than /LATEST) will need to be updated before doing a
commit.

Commit changes by going into an integration view and doing a findmerge -ftag (or -
fversion) of the changes from your development task/view into the integration view
(here again, a script or batch file is often used to simplify the interface and conceptual
complexity of the findmerge command)

Labels are created using the mklbtype command to create th.e label name and the
mklabel command to apply the label to selected versions. A checkpoint maybe created
by applying a label to the entire view, or just the latest versions on the task branch, or
even just recording a timestamp for the most recent checkpoint.
184 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

ClearCase - Unified Change Management (UCM)

The Unified Change Management (UCM) option for ClearCase adds higher level
concepts and provides direct support for change-tasks, update, and commit opera-
tions (to a much greater degree than “view profiles” and “private branches”). A code-
line may be regarded as a UCM project to which developers may subscribe. Each
project may have an integration stream (where changes are merged to the codeline)
and one or more development streams. A UCM stream is at once both a “workspace”
and a “task branch” of sorts. UCM also directly supports the notion of an “activity”,

and allows a stream to encompass more than one activity (so it need not be limited to
a single task). UCM directly supports each of the SCM pattern concepts as follows:

Start a new change task by creating a new development stream for an associated project
(or using an existing development stream). Then create a new activity to work on in
that development stream as the current activity. UCM will capture the versions associ-
ated with that activity as its change-set.

Updating one’s workspace corresponds to performing a “rebase” operation for the
current activity in a development stream. Committing the changes corresponds to a
“deliver” operation.

A UCM project can be configured with certain codeline policy elements, such as
requiring a rebase prior to delivery.

TABLE 1-8. Mapping of SCM pattern concepts to UCM ClearCase concepts

SCM Pattern concept name UCM concept name Comments

Repository Versioned Object

Base (VOB)

Development Workspace development stream cleartool mkstream

Codeline project cleartool mkproject plus an integration

stream and “base”

Change Task activity cleartool mkactivity

Workspace Update rebase cleartool rebase

Task-level Commit deliver cleartool deliver

Task Branch activity an activity in a development stream

Label baseline cleartool mkbl

Codeline Policy project policy settings

Integration Workspace integration stream
Tool Support for SCM Patterns (SBtool-appendix.fm 6/14/02) 185

UCM baselines correspond to labels and may be full or partial/incremental. Baselines
may have a promotion-level associated with them to indicate the level of verification
and/or quality assurance they have undergone (e.g., initial, rejected, built, tested,
released). Each baseline must be associated with a UCM component (which is a source-
tree of files in a VOB).

CM Synergy

CM Synergy was once known as Continuus and is a very powerful process-centered

SCM tool that makes use of tasks, projects, and folders along with highly config-
urable workflow.

CM Synergy uses the terms repository and database interchangeable. A CM synergy
database holds one or more projects or products. All the files for a particular system
are usually mapped to a top-level project.

Workspaces in CM Synergy are called work areas or working projects. A working project
is created simply by checking out the entire project into the designated work area.
The work area provides a file-system-based view of a project in terms of a component
source-tree of files and directories.

The logical unit of change in CM Synergy is a task. CM Synergy has no need to create
a new branch for a task. Developers simply set up their workspace and work on their
assigned task(s) in that workspace. An “update members” (or reconfigure) operation is
used to update the work area’s working project. In this manner, a project object corre-
sponds to a codeline.

TABLE 1-9. Mapping of SCM pattern concepts to CM Synergy concepts

SCM Pattern concept name CM Synergy concept name Comments

Repository project also see base model

Development Workspace work area also see working project

Codeline project object

Change Task task

Workspace Update update members also see reconfigure

Task-level Commit complete task also called checkin task

Task Branch task

Label baseline

Codeline Policy project template
186 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

When changes for a task are finished, a complete task (or checkin task) operation com-
mits the changes to the project for other developers to see.

CM Synergy also supports the notion of a release stream, which is a more formal sort
of codeline corresponding to the RELEASE LINE pattern. To create a label in CM Syn-
ergy, one does a release (checkin) of an entire project. This captures the current config-
uration of a project and associates a release name with it by automatically setting the
release attribute on all object members of the project.

StarTeam

StarTeam, a relative newcomer on the process oriented SCM tool scene that is getting
more well known, bills itself as an easy to use tool with a configurable workflow that
can read and work with VSS and PVCS VM repositories. StarTeam uses a centralized,
SQL compliant database as its repository. Windows, Unix, and Web clients access
Projects containing folder/file hierarchies managed by the repository. A StarTeam View is
a set of working folders and working files in a project representing both workspaces and
codelines. All development activities take place in a StarTeam View.

A StarTeam distinguishing feature is its ability to combine in a single tab based view,
definition and linking of files, changes, requirements, tasks, and topics. So in addition
to tracking and reproducing changes to files it can also track and electronically link

TABLE 1-10. Mapping of SCM pattern concepts to StarTeam concepts

SCM Pattern concept name CM Synergy concept name Comments

Repository repository also see project

Development Workspace working files/folders also see view

Codeline project view also see reference view and branching view

Change Task task

Workspace Update check in also see update status, and view compare/

merge

Task-level Commit merge

Task Branch branching view also see process rules, project view and ref-

erence view

Label label see also view label and revision label

Checkpoint view label
Tool Support for SCM Patterns (SBtool-appendix.fm 6/14/02) 187

files with changes, tasks, and topics, and with each other. StarTeam topics allow Usenet-
style threaded conversations to occur between team members and allows the topic to
be linked to tasks and other StarTeam objects.

Changes and tasks are the logical unit of change in StarTeam and, although it is possi-
ble, there is no need to create a new branch for a change or task. StarTeam process rules
achieve the same goal. Process rules ensure that no file revision is created that is not
also linked and pinned to a change or task. Developers need only to follow the link to
check out and work on their assigned files.

The workspace, or StarTeam view is updated by checking in or merging files that
have been modified. Tasks are completed by updating them. And finally, a new view
label is created from the updated view and completed tasks.

A new mainline is created using File/Project/New dialog. An initial baseline work-
space is created using the Folder/New dialog which relates the StarTeam folder hier-
archy to the users operating system directory structure.

A new task is created by selecting the Task Tab then Tasks/New Task dialog. The
Link tool is used to associate files to the task. The linked files are edited using the
File/Edit dialog or using the operating system editor.

The workspace is updated using the File/Check-in dialog, which updates the work-
space and the codeline.

A revision label identifying all the files in the view is created using the View/Labels
dialog and selecting revision as the label type.

The task is then updated by selecting the task and RMB/update dialog
188 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

PVCS Dimensions

PVCS Dimensions gained it’s fame under the name PCMS from SQL software. It has
since undergone several new versions since being acquired by the Merant and incor-
porated into the PVCS product line. It is a very complete SCM tool that covers not
only version management but also change management and process management.

PVCS Dimensions supports the concept of both products and projects. A product will
typically map to a top-level project in the database.

A workspace in PVCS corresponds to a workset. Developers can share a common
workset, or may be allowed to create a private workset to hold their changes.

Change-tasks are called work packages and may also be made to correspond to what
Dimensions refers to as a change document using Dimensions’s object relationships
and linking capabilities.

TABLE 1-11. Mapping of SCM pattern concepts to PVCS Dimensions concepts

SCM Pattern concept name
PVCS Dimensions
concept name Comments

Repository Base database typically a Product or Project within a base-

database, depending on the repository level

Development Workspace private workset

Codeline named branch also could be a workset

Change Task work package see also change document

Workspace Update N/A updates the workset with the latest versions

from the codeline (also see checkin)

Task-level Commit promote action promotes a change-task from an implemen-

tation status to a verification status

Task Branch work package see also change document and named

branch

Label baseline also see Create Revised Baseline and certain

kinds of named branches

Codeline Policy control plan captures team development process and

rules
Tool Support for SCM Patterns (SBtool-appendix.fm 6/14/02) 189

Changes are committed by promoting the changes in a workset from an implementa-
tion state to a verification state.

Codelines are created by making a named branch, and/or by using an integration
workset into which other worksets are merged for the codeline.

Labels correspond to baselines that may be created for a product.

PVCS Version Manager

PVCS VM has been around a long time and, as a result, is one of the more commonly

used commercial VC tools. It is well known for its promotion modeling capability
which allows customers to define team development tasks, worksets, projects, and
their progression from initial development of changes to increasing promotion levels
of stability and quality assurance.

A PVCS project database can hold one or more projects each of which can have its own
project configuration options. A promotion model is a set of promotion groups, where
each promotion group defines a level or milestone in a particular development cycle.

A developer will typically create a workspace by opening a project database and
selecting a project to view in the workspace, specifying the workfile location from
which files will be checked in and out.

The workspace is populated by getting unlocked versions of the files (get) in the
project view. A file may be edited by performing a checkout to create a writable copy.
This locks the file against checkout by other developers in the project.

TABLE 1-12. Mapping of SCM pattern concepts to PVCS Version Manager concepts

SCM Pattern concept name PVCS VM concept name Comments

Repository project database also see project root

Development Workspace workspace also see subproject and workfile location

Codeline branch

Change Task N/A

Workspace Update N/A

Task-level Commit check in

Task Branch N/A

Label version label also see baselining

Codeline Policy promotion groups also see project configuration options
190 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

Typical PVCS operation really doesn’t encourage parallel development for individual
projects and their codelines (so there is no direct equivalent of a workspace update
that reconciles changes without doing a checkin), but variant projects and subprojects
may be used to create branches that correspond to alternate codelines of develop-
ment.

The checkin operation is the way in which changes are committed to the project.

Version labels may be created for a project to represent version identifier labels.

MKS Integrity (Enterprise edition)

Source Integrity (SI) is very similar in its operation to PVCS Version Manager. SI
projects are sets of files that are grouped together as a single body or scope of work.
Projects maybe broken down into subprojects. Project members are source files. A
workspace is called a “sandbox” in SI. Codelines and task-branches are called develop-
ment paths, version identifiers are called project checkpoints and may be assigned
project labels.

One of SIs most powerful features are change packages, which can be used to hold a
single change-task, or a collection of changes to move back and forth between a mas-
ter project and a development path for a variant project (and vice versa).

A sandbox is created and associated with a project and the latest versions of its mem-
bers. Files are checked out in the sandbox as needed. Checkouts lock the file in the
project as with PVCS VM.

TABLE 1-13. Mapping of SCM pattern concepts to MKS Source Integrity concepts

SCM Pattern concept name
MKS Integrity
concept name Comments

Repository top-level project

Development Workspace sandbox

Codeline development path also see projects and subproject

Change Task change package

Workspace Update resync

Task-level Commit checkin

Task Branch change package

Label project checkpoint also labels
Tool Support for SCM Patterns (SBtool-appendix.fm 6/14/02) 191

The sandbox may be updated via a resync command, and all the changes made in the
sandbox may be grouped into a change package if desired.

Eventually, a checkin command commits the changes to the project.

Codelines are created by making a variant project of a master project and associating
it with a development path.

Checkpointing a project creates a new version identifier for the last state of the
project. Labels may be created explicitly and associated with a checkpoint or with the
current versions in a project.

Further Reading

See the vendor home pages mentioned above for the definitive source of information
on all of these tools. Also see the following:
• The book Essential SourceSafe by Ted Roche and Larry C. Whipple (Roche

and Whipple 2001) is a basic guide for VSS installation, administration, and
usage

• VSS technical FAQ and resources at http://msdn.microsoft.com/ssafe/tech-
nical/ (and an unofficial FAQ located at http://www.michaelis.net/SourceSafe/
Faq.htm)

• Open Source Development with CVS (Fogel and Bar 2001) is an excellent guide
to using CVS

• Practical Software Configuration Management (Mikkelsen and Pherigo 1997)
also covers some aspects of CVS usage, but is not as recent as Fogel’s book.

• Pascal Molli maintains an excellent collection of CVS related links and
information at http://www.loria.fr/~molli/cvs-index.html

• Bryan White’s Software Configuration Management Strategies and Rational
ClearCase (White 2000) provides an overview of UCM

• Christian Goetze maintains an “unofficial” ClearCase FAQ at http://
www.cg-soft.com/faq/clearcase.html

• Alexis Leon’s Guide to Software Configuration Management (Leon 2000) has an
overview of several dozen SCM tools in its appendices.

• Susan Dart’s Configuration Management: The Missing Link in Web Engineering
(Dart 1992) contains a great deal of information, including several sections
on evaluating and selecting CM tools for the enterprise
192 (SBtool-appendix.fm) Tool Support for SCM Patterns (C)

Chapter D
Photo Credits

Page 11 Photo by Russel Lee, May 1938. Library of Congress, Prints & Photographs Division,
FSA-OWI Collection, Reproduction number LC-USF33-011474-M3 DLC

Page 25 Photo by Arthur Rothstein. Library of Congress, Prints & Photographs Division, FSA-
OWI Collection LC-USF34-024346-D (b&w film neg.)

Page 37 Photo by Russel Lee, May 1938. Library of Congress, Prints & Photographs Division,
FSA-OWI Collection, Reproduction Number: LC-USF33-011692-M4 (b&w film neg.)

Page 55 Photo by John Vachon. Library of Congress, Prints & Photographs Division, FSA-OWI
Collection, Reproduction number LC-USF34-064602-D DLC (b&w film neg.)

Page 63 Library of Congress, Prints and Photographs Division, Detroit Publishing Company
Collection. Reproduction number. LC-D418-31625 DLC (b&w glass neg.)

Page 71 Photo by David Meyers. Library of Congress, Prints & Photographs Division, FSA-
OWI Collection Reproduction Number LC-USF33-015598-M2 (b&w film neg.).

Page 83 Photo by Russell Lee. Library of Congress, Prints & Photographs Division, FSA-OWI
Collection Reproduction Number LC-USF33-013141-M1 (b&w film neg.)

Page 91 Photo: MBDMOTI+EC001, Modern Times with Charlie Chaplin. Reprinted with per-
mission of Everett Collection, Inc.

Page 101 Photo by Alfred T Palmer Library of Congress, Prints & Photographs Division, FSA-
OWI Collection Reproduction Number LC-USW361-138 (color film copy slide)

Page 107 Photo by John Vachon. Library of Congress, Prints & Photographs Division, FSA-OWI
Collection, reproduction number LC-USF34-061836-D (b&w film neg.)
Photo Credits (SBPhotoCreditsLOM.fm 6/14/02) 1

Page 115 Photo by Alfred T Palmer. Library of Congress, Prints & Photographs Division, FSA-
OWI Collection, Reproduction number LC-USE6-D-000162 (b&w film neg.).

Page 119 Photo By John Collier. Library of Congress, Prints & Photographs Division, FSA-OWI
Collection, LC-USF34-084002-C (b&w film neg.)

Page 125 Photo by Lee Russell. Library of Congress, Prints & Photographs Division, FSA-OWI
Collection,Reproduction Number LC-USF33-011632-M3 (b&w film neg.)

Page 129 Photo by Alfred T. Palmer. Library of Congress, Prints & Photographs Division, FSA-
OWI Collection, Reproduction Number LC-USE6-D-005032 (b&w film neg.)

Page 133 Photo by Alfred T. Palmer. Library of Congress, Prints & Photographs Division, FSA-
OWI Collection, Reproduction Number LC-USE6-D-007389 (b&w film neg.)

Page 137 Photo by Marjory Collins, Library of Congress, Prints & Photographs Division, FSA-
OWI Collection Reproduction Number LC-USW3-009019-D (b&w film neg.)

Page 143 Photo by Jack Delano, Library of Congress, Prints & Photographs Division, FSA-OWI
Collection,LC-USW3-014014-E (b&w film neg.)

Page 149 Photo by Jack Delano. Library of Congress, Prints & Photographs Division, FSA-OWI
Collection, Reproduction Number LC-USW3-012717-D (b&w film neg.)

Page 153 Photo By John Collier. Library of Congress, Prints & Photographs Division, FSA-OWI
Collection, Reproduction number, LC-USW3-010723-C (b&w film neg.)
2 (SBPhotoCreditsLOM.fm) Photo Credits (D)

Chapter E
About the Photos

Chapter 1 (page 11): Barn erection. View of roofing operation from beneath, showing con-
struction of the roof system. Southeast Missouri Farms Project.

Chapter 2 (page 25): Elevated structure and buildings. Lower Manhattan,December, 1941

Chapter 3 (page 37): Patterns of tools painted on wall for easy identification, Lake Dick
Project, Arkansas, Sept 1938.

Chapter 4 (page 55): Bowdle, South Dakota. On the main line. Feb 1942.

Chapter 5 (page 63): Construction, Grand Central Terminal, New York, N.Y. bet 1905 & 1915.

Chapter 6 (page 71): Washington, D.C., 1939 A government clerk’s room, showing a desk
with books, telephone and directory, and a desk lamp on it.

Chapter 7 (page 83): Cases of canned salmon in warehouse, Astoria, Oregon. September,
1941.

Chapter 8 (page 91): Charlie Chaplin in Modern Times.

Chapter 9 (page 101): Making wiring assemblies at a junction box on the fire wall for the right
engine of a B-25 bomber, North American Aviation, Inc., [Inglewood], Calif. July, 1942.

Chapter 10 (page 107): Man who operates small grocery store and secondhand furniture store
in his home. Chanute, Kansas.November, 1940.
About the Photos (SBPhotoCaptionsLOM.fm 6/14/02) 1

Chapter 11 (page 115): Proud of his job. Smiling worker in an eastern arsenal hand finishes
the interior surface of a cradle for an 8-inch gun, railway carriage. 1942.

Chapter 12 (page 119): Richwood, West Virginia. Louise Thompson, daughter of a newspaper
editor in Richwood. She is a printer’s devil. September, 1942.

Chapter 13 (page 125): Fighting fire of rice straw stack in rice field near Crowley, Louisi-
ana.1938 Sept.

Chapter 14 (page 129): All the parts of an airplane engine, which has just undergone severe
tests in a Midwest plant, are spread out for minute inspection. Continental Motors, Michigan.
Feburary, 1942.

Chapter 15 (page 133): An experimental scale model of the B-25 plane is prepared for wind
tunnel tests in the Inglewood, California plant of North American Aviation, Incorporated. Oc-
tober, 1942

Chapter 16 (page 137): New York, New York. "Morgue" of the New York Times newspaper.
Clippings on every conceivable subject are filed here for a reference. Editors and writers phone
in for information. September, 1942.

Chapter 17 (page 143): January, 1943. Freight operations on the Chicago and Northwestern
Railroad between Chicago and Clinton, Iowa. The rear brakeman signals the engineer to test
the brakes by applying and releasing them. This is the signal for "apply".

Chapter 18 (page 149): hicago, Illinois. Train pulling out of a freight house at a Chicago and
Northwestern Railroad yard. The wooden trestle is part of a long chain belt used to carry blocks
of ice from the ice house to the freight house.December, 1942.

Chapter 19 (page 153): Pittsburgh, Pennsylvania (vicinity). Montour no. 4 mine of the Pitts-
burgh Coal Company. There are miles and miles of track in a mine and the maintenance of the
roadbed, ballast and switches keeps a crew working constantly. November 1942.
2 (SBPhotoCaptionsLOM.fm) About the Photos (E)

Production Reference Materials
(Spacer1.fm 6/14/02) 1

2 (Spacer1.fm) (1)

List of Figures

Table of Contents iii
Preface ix
Contributor’s Preface xiii
Acknowledgements xv
Introduction 1

Figure 0-1. A Code Line and its Components 3

Figure 0-2. Populating a Workspace from different Code Lines 4

Figure 0-3. Branching a Single File and Merging with the Trunk5

Figure 0-4. Branching an Entire Codeline. 5

Figure 0-5. Codeline Diagram Notation 6
Putting a System Together 11
The Software Environment 25

Figure 2-1. The Interactions Between Elements of the Environment 29
Patterns 37

Figure 3-1. The SCM Pattern Language 45

Figure 3-2. Codeline related patterns46

Figure 3-3. Workspace Related Patterns 49
Mainline 55

Figure 4-1. A Merge Can be Mes s y56

Figure 4-2. Staircase Branching (or a Cascade) 57

Figure 4-3. Mainline Development 60
Active Development Line 63

Figure 5-1. Long Running Tests have Mixed Value. 65

Figure 5-2. A Stable, but Dead, Codeline. 65

Figure 5-3. A Very Active, but very Useless Codeline 65

Figure 5-4. An Active, Alive, Codeline 67

Figure 5-5. Labeling Named Stable Bases 68
Private Workspace 71

Figure 6-1. Combining Changes at Once. 73
List of Figures (SBSCMBookLOF.fm 6/14/02) 1

Figure 6-2. Integrating each change as it happens 74

Figure 6-3. Sharing Some Components between Workspaces. 75
Repository 83

Figure 7-1. A Workspace is created from many things. 84

Figure 7-2. Populate Your Workspace from a Repository 87

Figure 7-3. Version Tree for a workspace 88
Private System Build 91

Figure 8-1. The Build integrates changes from everyone. 92

Figure 8-2. Components of the private system build. 95
Integration Build 101

Figure 9-1. Integration can be Difficul t .103

Figure 9-2. An Integration Build Process Assembles the Pieces 105
Third Party Codeline 107

Figure 10-1. Vendor Releases and Your Releases are not in Sync. 108

Figure 10-2. Third Party Codeline 111
Task Level Commit 115
Codeline Policy 119

Figure 12-1. Each Code Line needs different rules. 120
Smoke Test 125
Unit Test 129
Regression Test 133
Private Versions 137

Figure 16-1. Each decision leads to more choices, until you pick the
solution. 138

Figure 16-2. Using the Code Line for staging generates a lot of noise. 139
Release Line 143

Figure 17-1. Doing all your work on the mainline 144

Figure 17-2. Create a Branch when you Ship145

Figure 17-3. Staircase of Dependent Branches. 145

Figure 17-4. Release Line 147
Release-Prep Code Line 149

Figure 18-1. Release-Prep Code Line 151
Task Branch 153

Figure 19-1. Some Tasks are for the future 154

Figure 19-2. Creating a Release Line too Early is Troublesome 155

Figure 19-3. Task Branch 156
Referenced Patterns 159
Bibliography 161
SCM Resources On-line 167
2 (SBSCMBookLOF.fm) List of Figures (1)

Tool Support for SCM Patterns 171
Photo Credits 1
About the Photos 1
List of Figures 1
List of Figures (SBSCMBookLOF.fm 6/14/02) 3

4 (SBSCMBookLOF.fm) List of Figures (1)

Table of Contents iii

Preface ix

Contributor’s Preface xiii

Acknowledgements xv

Introduction 1

Putting a System Together 11

The Software Environment 25

Patterns 37

Mainline 55
How do you keep the number of currently active codelines to a manageable set, and avoid
growing the project's version tree too wide and too dense? How do you minimize the over-
head of merging? 55
When you are developing a single product release, develop off of a mainline. A
mainline is a “home codeline” that you do all of your development on, except in
special circumstances. When you do branch, consider your overall strategy before
you create the branch. When in doubt, go for a simpler model. 59

Active Development Line 63
How do you keep a rapidly evolving codeline stable enough to be useful? 63
Institute policies that are effective in making your main development line stable
enough for the work it needs to do. Do not aim for a perfect active development
line, but rather for a mainline that is usable and active enough for your needs. 66

Private Workspace 71
How do you do keep current with a continuously changing codeline, and also make progress
without being distracted by your environment changing out from under you? 72
Do your work in a Private Workspace where you control the versions of code and
components that you are working on. You will have total control over when and
how your environment changes. 76
(SBPatternThumbnailsLOP.fm 6/14/02) 1

Repository 83
How do you build get the right versions of the right components into a new workspace? 83
Have a single point of access, or a Repository, for your code and related artifacts.
Make creating a developer workspace as simple and as transparent as possible. 86

Private System Build 91
How do you verify that your changes do not break the build or the system before you check
them in. 91
Before making a submission to source control, build the system using a Private
System Build that is similar to the nightly build. 94

Integration Build 101
How do you make sure that the code base always builds reliably? 101
Be sure that all changes (and their dependencies) are built using a central integra-
tion build process. 104

Third Party Codeline 107
What is the most effective strategy to coordinate versions of vendor code with versions of
product code? 108
Create a codeline for third party code. Build workspaces and installation kits from
this codeline. 110

Task Level Commit 115
How much work should you do between submission to the Version Control System? How
long should you wait before checking files in? 115
Do one commit per small grained, consistent task. 117

Codeline Policy 119
How do the developers know which codeline to check their code into, and when to when to
check it in, and what tests to run before check in? 119
For each branch or codeline, formulate a policy that determines how and when de-
velopers should make changes. The policy should be concise and auditable. 122

Smoke Test 125
How do you know that the system will still work after you make a change? 125
Subject each build to a smoke test that verifies that the application has not broken
in an obvious way. 126
2 (SBPatternThumbnailsLOP.fm) (1)

Unit Test 129
How do you test whether a module still works as it should after making a change? 129
Develop and Run Unit Tests. 131

Regression Test 133
How do you ensure that existing code doesn’t get worse as you make other improvements?
133
Run regression tests on the system whenever you want to ensure stability of the
codeline, such as before you release a build, or before a particularly risky change.
Create the regression tests from test cases that the system has failed in the past. 135

Private Versions 137
How can you experiment with a complex change and benefit from the version control sys-
tem without making the change public? 137
Provide developers with a mechanism for check pointing changes at a granularity
that they are comfortable with. This can be provided for by a local revision control
area, Only stable code sets are checked into the project repository 140

Release Line 143
How do you do maintence on released versions without interfering with your current de-
velopment work? 143
Split maintence/release and active development into separate codelines. Keep
each released version on a release line. Allow the line to progress on its own for
bug fixes. Branch each release off of the mainline. 146

Release-Prep Code Line 149
How do you stabilize a codeline for an impending release while also allowing new work to
continue on an active codeline? 149
Create a release-engineering branch when code is approaching release quality.
Finish up the release on this branch, and leave the mainline for active develop-
ment. The branch becomes the release branch. 151

Task Branch 153
How can your team make multiple, long term overlapping changes to a codeline without
compromising its consistency and integrity? 153
Fork off a separate branch for each activity that has significant changes for a code-
line. 156
(SBPatternThumbnailsLOP.fm 6/14/02) 3

Referenced Patterns 159

Bibliography 161

SCM Resources On-line 167

Tool Support for SCM Patterns 171

Photo Credits 1

About the Photos 1

List of Figures 1
4 (SBPatternThumbnailsLOP.fm) (1)

AU 1
AU 2
BL 104
BL 104
BL 106
BL 110
BL 110
BL 111
BL 111
BL 117
BL 117
BL 12
BL 122
BL 122
BL 122
BL 122
BL 122
BL 127
BL 127
BL 131
BL 131
BL 131
BL 132
BL 135
BL 168
BL 168
BL 168
BL 169
BL 169
BL 169
BL 172
BL 172
BL 172
BL 172
BL 172
BL 172
BL 174
BL 18
(SBFormatsAPL.fm 6/14/02) 1

BL 192
BL 192
BL 192
BL 192
BL 192
BL 192
BL 192
BL 192
BL 192
BL 2
BL 2
BL 2
BL 20
BL 20
BL 20
BL 20
BL 20
BL 21
BL 21
BL 21
BL 21
BL 21
BL 23
BL 23
BL 24
BL 27
BL 27
BL 28
BL 28
BL 28
BL 29
BL 31
BL 32
BL 32
BL 33
BL 34
BL 34
BL 34
2 (SBFormatsAPL.fm) (1)

BL 34
BL 34
BL 35
BL 35
BL 35
BL 35
BL 36
BL 36
BL 36
BL 36
BL 40
BL 40
BL 42
BL 42
BL 42
BL 42
BL 42
BL 42
BL 43
BL 43
BL 43
BL 45
BL 45
BL 45
BL 46
BL 46
BL 46
BL 46
BL 46
BL 46
BL 46
BL 46
BL 46
BL 50
BL 50
BL 50
BL 50
BL 50
(SBFormatsAPL.fm 6/14/02) 3

BL 61
BL 61
BL 61
BL 62
BL 62
BL 67
BL 67
BL 67
BL 76
BL 76
BL 77
BL 77
BL 77
BL 77
BL 77
BL 77
BL 77
BL 77
BL 8
BL 8
BL 8
BL 8
BL 8
BL 81
BL 84
BL 84
BL 84
BL 84
BL 84
BL 87
BL 87
BL 94
BL 96
BL1 104
BL1 105
BL1 106
BL1 110
BL1 117
4 (SBFormatsAPL.fm) (1)

BL1 12
BL1 12
BL1 122
BL1 122
BL1 123
BL1 127
BL1 128
BL1 131
BL1 131
BL1 132
BL1 135
BL1 136
BL1 147
BL1 167
BL1 167
BL1 168
BL1 168
BL1 168
BL1 168
BL1 168
BL1 169
BL1 169
BL1 169
BL1 169
BL1 170
BL1 170
BL1 172
BL1 174
BL1 174
BL1 175
BL1 175
BL1 175
BL1 176
BL1 176
BL1 18
BL1 2
BL1 20
BL1 20
(SBFormatsAPL.fm 6/14/02) 5

BL1 21
BL1 23
BL1 23
BL1 26
BL1 28
BL1 29
BL1 31
BL1 32
BL1 32
BL1 34
BL1 34
BL1 35
BL1 36
BL1 40
BL1 42
BL1 43
BL1 45
BL1 46
BL1 50
BL1 60
BL1 61
BL1 61
BL1 62
BL1 67
BL1 69
BL1 7
BL1 72
BL1 76
BL1 77
BL1 77
BL1 84
BL1 87
BL1 89
BL1 94
BL1 96
BL1 96
BL1 97
BL1 98
6 (SBFormatsAPL.fm) (1)

Body 1
Body 1
Body 1
Body 1
Body 1
Body 1
Body 1
Body 1
Body 1
Body 1
Body 1
Body 1
Body 101
Body 102
Body 102
Body 103
Body 103
Body 103
Body 104
Body 105
Body 105
Body 105
Body 105
Body 106
Body 106
Body 106
Body 106
Body 106
Body 108
Body 108
Body 108
Body 109
Body 109
Body 109
Body 11
Body 110
Body 110
Body 110
(SBFormatsAPL.fm 6/14/02) 7

Body 111
Body 111
Body 111
Body 112
Body 112
Body 112
Body 112
Body 112
Body 112
Body 113
Body 113
Body 113
Body 113
Body 113
Body 114
Body 115
Body 116
Body 116
Body 116
Body 116
Body 116
Body 117
Body 117
Body 117
Body 117
Body 117
Body 118
Body 118
Body 118
Body 118
Body 118
Body 118
Body 119
Body 12
Body 12
Body 12
Body 120
Body 120
8 (SBFormatsAPL.fm) (1)

Body 121
Body 121
Body 121
Body 122
Body 122
Body 122
Body 122
Body 122
Body 123
Body 123
Body 123
Body 125
Body 126
Body 126
Body 126
Body 127
Body 127
Body 127
Body 127
Body 127
Body 127
Body 127
Body 128
Body 128
Body 128
Body 128
Body 128
Body 128
Body 128
Body 129
Body 130
Body 130
Body 130
Body 131
Body 131
Body 131
Body 131
Body 131
(SBFormatsAPL.fm 6/14/02) 9

Body 131
Body 131
Body 132
Body 132
Body 133
Body 134
Body 134
Body 134
Body 134
Body 134
Body 134
Body 135
Body 135
Body 135
Body 135
Body 136
Body 136
Body 136
Body 137
Body 138
Body 138
Body 139
Body 139
Body 139
Body 139
Body 14
Body 14
Body 14
Body 140
Body 140
Body 141
Body 141
Body 141
Body 143
Body 144
Body 144
Body 145
Body 145
10 (SBFormatsAPL.fm) (1)

Body 145
Body 145
Body 145
Body 146
Body 147
Body 147
Body 147
Body 149
Body 15
Body 15
Body 15
Body 15
Body 15
Body 150
Body 150
Body 150
Body 151
Body 151
Body 151
Body 151
Body 151
Body 152
Body 152
Body 152
Body 153
Body 154
Body 154
Body 154
Body 155
Body 155
Body 156
Body 156
Body 156
Body 157
Body 157
Body 159
Body 159
Body 159
(SBFormatsAPL.fm 6/14/02) 11

Body 159
Body 159
Body 159
Body 16
Body 16
Body 16
Body 16
Body 16
Body 167
Body 167
Body 167
Body 168
Body 168
Body 168
Body 168
Body 169
Body 169
Body 169
Body 17
Body 170
Body 171
Body 172
Body 173
Body 173
Body 173
Body 173
Body 173
Body 174
Body 174
Body 174
Body 174
Body 174
Body 175
Body 175
Body 176
Body 176
Body 177
Body 177
12 (SBFormatsAPL.fm) (1)

Body 177
Body 177
Body 178
Body 178
Body 178
Body 178
Body 178
Body 178
Body 179
Body 179
Body 179
Body 18
Body 18
Body 18
Body 180
Body 180
Body 180
Body 180
Body 180
Body 180
Body 180
Body 180
Body 181
Body 181
Body 181
Body 181
Body 182
Body 182
Body 182
Body 182
Body 182
Body 182
Body 182
Body 183
Body 183
Body 183
Body 184
Body 184
(SBFormatsAPL.fm 6/14/02) 13

Body 184
Body 184
Body 184
Body 184
Body 184
Body 184
Body 184
Body 184
Body 184
Body 185
Body 185
Body 185
Body 185
Body 186
Body 186
Body 186
Body 186
Body 186
Body 187
Body 187
Body 187
Body 187
Body 188
Body 188
Body 188
Body 188
Body 188
Body 188
Body 188
Body 189
Body 189
Body 189
Body 189
Body 19
Body 19
Body 19
Body 19
Body 19
14 (SBFormatsAPL.fm) (1)

Body 19
Body 19
Body 190
Body 190
Body 190
Body 190
Body 190
Body 190
Body 190
Body 191
Body 191
Body 191
Body 191
Body 191
Body 191
Body 192
Body 192
Body 192
Body 192
Body 192
Body 192
Body 2
Body 2
Body 2
Body 2
Body 20
Body 20
Body 21
Body 21
Body 21
Body 22
Body 22
Body 22
Body 22
Body 22
Body 22
Body 23
Body 23
(SBFormatsAPL.fm 6/14/02) 15

Body 23
Body 23
Body 23
Body 25
Body 25
Body 26
Body 26
Body 26
Body 27
Body 27
Body 27
Body 28
Body 29
Body 29
Body 29
Body 3
Body 30
Body 30
Body 30
Body 30
Body 31
Body 31
Body 31
Body 31
Body 31
Body 32
Body 32
Body 32
Body 32
Body 32
Body 33
Body 33
Body 33
Body 33
Body 33
Body 34
Body 34
Body 34
16 (SBFormatsAPL.fm) (1)

Body 34
Body 35
Body 35
Body 36
Body 37
Body 37
Body 38
Body 38
Body 38
Body 38
Body 38
Body 38
Body 38
Body 39
Body 39
Body 39
Body 39
Body 39
Body 4
Body 40
Body 40
Body 40
Body 41
Body 41
Body 41
Body 41
Body 41
Body 41
Body 41
Body 42
Body 42
Body 42
Body 42
Body 43
Body 43
Body 43
Body 44
Body 44
(SBFormatsAPL.fm 6/14/02) 17

Body 44
Body 44
Body 44
Body 45
Body 45
Body 45
Body 46
Body 46
Body 48
Body 5
Body 5
Body 5
Body 50
Body 50
Body 50
Body 56
Body 56
Body 56
Body 57
Body 57
Body 57
Body 57
Body 58
Body 58
Body 59
Body 59
Body 59
Body 6
Body 6
Body 60
Body 60
Body 60
Body 60
Body 60
Body 60
Body 61
Body 61
Body 61
18 (SBFormatsAPL.fm) (1)

Body 64
Body 64
Body 64
Body 64
Body 64
Body 65
Body 65
Body 65
Body 65
Body 66
Body 66
Body 67
Body 67
Body 67
Body 67
Body 67
Body 68
Body 68
Body 68
Body 68
Body 68
Body 69
Body 69
Body 69
Body 69
Body 69
Body 69
Body 7
Body 72
Body 72
Body 72
Body 72
Body 72
Body 74
Body 74
Body 74
Body 75
Body 75
(SBFormatsAPL.fm 6/14/02) 19

Body 75
Body 76
Body 76
Body 77
Body 77
Body 77
Body 77
Body 78
Body 78
Body 78
Body 78
Body 78
Body 78
Body 79
Body 79
Body 79
Body 79
Body 79
Body 79
Body 79
Body 79
Body 80
Body 80
Body 80
Body 83
Body 84
Body 84
Body 85
Body 85
Body 85
Body 85
Body 85
Body 85
Body 87
Body 87
Body 87
Body 88
Body 88
20 (SBFormatsAPL.fm) (1)

Body 88
Body 89
Body 89
Body 89
Body 92
Body 92
Body 92
Body 93
Body 93
Body 94
Body 95
Body 95
Body 95
Body 96
Body 96
Body 96
Body 97
Body 97
Body 97
Body 97
Body 97
Body 97
Body 97
Body 98
Body 98
Body 98
Body 98
Body 98
Body ix
Body ix
Body ix
Body ix
Body x
Body x
Body x
Body xi
Body xi
Body xi
(SBFormatsAPL.fm 6/14/02) 21

Body xi
Body xi
Body xii
Body xii
Body xii
Body xii
Body xii
Body xiii
Body xiii
Body xiii
Body xiii
Body xiii
Body xiii
Body xiv
Body xiv
Body xiv
Body xiv
Body xv
Body xv
Body xv
BT 1
BX 104
BX 105
BX 117
BX 12
BX 12
BX 12
BX 122
BX 123
BX 127
BX 128
BX 131
BX 131
BX 132
BX 135
BX 136
BX 147
BX 168
22 (SBFormatsAPL.fm) (1)

BX 174
BX 18
BX 2
BX 20
BX 21
BX 21
BX 23
BX 24
BX 27
BX 29
BX 31
BX 32
BX 33
BX 34
BX 34
BX 35
BX 36
BX 40
BX 42
BX 43
BX 46
BX 47
BX 51
BX 60
BX 61
BX 61
BX 62
BX 67
BX 69
BX 72
BX 77
BX 77
BX 77
BX 8
BX 81
BX 84
BX 89
BX 94
(SBFormatsAPL.fm 6/14/02) 23

BX 96
BX 96
BX 96
BX 97
BX 99
ContextBody 101
ContextBody 107
ContextBody 115
ContextBody 119
ContextBody 125
ContextBody 129
ContextBody 133
ContextBody 137
ContextBody 143
ContextBody 149
ContextBody 153
ContextBody 55
ContextBody 63
ContextBody 71
ContextBody 83
ContextBody 91
EX 156
EX 16
EX 184
EX 32
EX 38
EX 38
EX 39
Figure 103
Figure 105
Figure 108
Figure 111
Figure 120
Figure 138
Figure 139
Figure 144
Figure 145
Figure 145
24 (SBFormatsAPL.fm) (1)

Figure 147
Figure 151
Figure 154
Figure 155
Figure 156
Figure 29
Figure 3
Figure 4
Figure 45
Figure 46
Figure 49
Figure 5
Figure 5
Figure 56
Figure 57
Figure 6
Figure 60
Figure 65
Figure 65
Figure 65
Figure 67
Figure 68
Figure 73
Figure 74
Figure 75
Figure 84
Figure 87
Figure 88
Figure 92
Figure 95
FTN 2
FTN 45
HA 1
HA 1
HA 1
HA 101
HA 107
HA 11
(SBFormatsAPL.fm 6/14/02) 25

HA 115
HA 119
HA 125
HA 129
HA 133
HA 137
HA 143
HA 149
HA 153
HA 159
HA 161
HA 167
HA 171
HA 25
HA 37
HA 55
HA 63
HA 71
HA 83
HA 91
HB 1
HB 1
HB 1
HB 1
HB 101
HB 107
HB 11
HB 115
HB 119
HB 125
HB 129
HB 133
HB 137
HB 143
HB 149
HB 153
HB 159
HB 161
26 (SBFormatsAPL.fm) (1)

HB 167
HB 171
HB 25
HB 37
HB 55
HB 63
HB 71
HB 83
HB 91
HB iii
HB ix
HB xiii
HB xv
HC 1
HC 104
HC 106
HC 106
HC 110
HC 113
HC 113
HC 117
HC 118
HC 12
HC 122
HC 123
HC 123
HC 126
HC 128
HC 128
HC 131
HC 132
HC 132
HC 135
HC 136
HC 14
HC 140
HC 147
HC 15
(SBFormatsAPL.fm 6/14/02) 27

HC 151
HC 152
HC 153
HC 156
HC 159
HC 159
HC 161
HC 173
HC 175
HC 177
HC 179
HC 18
HC 181
HC 183
HC 185
HC 186
HC 187
HC 189
HC 19
HC 190
HC 191
HC 192
HC 22
HC 22
HC 22
HC 23
HC 23
HC 25
HC 27
HC 30
HC 30
HC 33
HC 35
HC 36
HC 38
HC 39
HC 40
HC 42
28 (SBFormatsAPL.fm) (1)

HC 42
HC 44
HC 50
HC 50
HC 51
HC 59
HC 6
HC 61
HC 62
HC 66
HC 69
HC 69
HC 7
HC 76
HC 80
HC 81
HC 86
HC 89
HC 89
HC 94
HC 98
HC 98
HC x
HC xi
HC xi
HC xii
HC xii
HC xiii
HD 167
HD 167
HD 168
HD 168
HD 168
HD 168
HD 169
HD 169
HD 169
HD 169
(SBFormatsAPL.fm 6/14/02) 29

HD 169
HD 169
HD 169
HD 169
HD 170
Indented2 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 171
INFTC 172
INFTC 172
INFTC 172
INFTC 172
INFTC 172
INFTC 172
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
30 (SBFormatsAPL.fm) (1)

INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 173
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
INFTC 175
(SBFormatsAPL.fm 6/14/02) 31

INFTC 175
INFTC 175
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 177
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
32 (SBFormatsAPL.fm) (1)

INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 179
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
(SBFormatsAPL.fm 6/14/02) 33

INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 181
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 183
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
34 (SBFormatsAPL.fm) (1)

INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 185
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
(SBFormatsAPL.fm 6/14/02) 35

INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 186
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
INFTC 187
36 (SBFormatsAPL.fm) (1)

INFTC 187
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 189
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
(SBFormatsAPL.fm 6/14/02) 37

INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 190
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
INFTC 191
38 (SBFormatsAPL.fm) (1)

INFTC 191
INFTC 191
INFTC 191
INFTC 7
INFTC 7
INFTC 7
INFTC 7
INFTC 7
INFTC 7
INFTC 7
INFTC 7
INFTC 7
INFTC 7
INFTC 7
INFTC 7
INFTC 7
INFTH 171
INFTH 171
INFTH 171
INFTH 171
INFTH 173
INFTH 173
INFTH 173
INFTH 173
INFTH 175
INFTH 175
INFTH 175
INFTH 175
INFTH 177
INFTH 177
INFTH 177
INFTH 177
INFTH 179
INFTH 179
INFTH 179
INFTH 179
INFTH 181
INFTH 181
(SBFormatsAPL.fm 6/14/02) 39

INFTH 181
INFTH 181
INFTH 183
INFTH 183
INFTH 183
INFTH 183
INFTH 185
INFTH 185
INFTH 185
INFTH 185
INFTH 186
INFTH 186
INFTH 186
INFTH 186
INFTH 187
INFTH 187
INFTH 187
INFTH 187
INFTH 189
INFTH 189
INFTH 189
INFTH 189
INFTH 190
INFTH 190
INFTH 190
INFTH 190
INFTH 191
INFTH 191
INFTH 191
INFTH 191
INFTH 7
INFTS 7
INFTS 7
PN 53
PN 9
Preface xii
ProblemStatement 101
ProblemStatement 108
40 (SBFormatsAPL.fm) (1)

ProblemStatement 115
ProblemStatement 119
ProblemStatement 125
ProblemStatement 129
ProblemStatement 133
ProblemStatement 137
ProblemStatement 143
ProblemStatement 149
ProblemStatement 153
ProblemStatement 55
ProblemStatement 63
ProblemStatement 72
ProblemStatement 83
ProblemStatement 91
PT 53
PT 9
SB 116
SB 155
SB 80
SB 80
SBX 117
SBX 155
SBX 80
SH 116
SH 155
SH 80
SolutionSummary 104
SolutionSummary 110
SolutionSummary 117
SolutionSummary 122
SolutionSummary 126
SolutionSummary 131
SolutionSummary 135
SolutionSummary 140
SolutionSummary 146
SolutionSummary 151
SolutionSummary 156
SolutionSummary 59
(SBFormatsAPL.fm 6/14/02) 41

SolutionSummary 66
SolutionSummary 76
SolutionSummary 86
SolutionSummary 94
StoryBody 104
StoryBody 109
StoryBody 109
StoryBody 109
StoryBody 121
StoryBody 126
StoryBody 126
StoryBody 13
StoryBody 13
StoryBody 13
StoryBody 130
StoryBody 135
StoryBody 140
StoryBody 146
StoryBody 146
StoryBody 150
StoryBody 17
StoryBody 17
StoryBody 30
StoryBody 58
StoryBody 58
StoryBody 58
StoryBody 58
StoryBody 59
StoryBody 66
StoryBody 76
StoryBody 86
StoryBody 86
StoryBody 86
StoryBody 86
StoryBody 86
StoryBody 93
StoryBody 93
StoryBody 94
42 (SBFormatsAPL.fm) (1)

StoryBody-last 104
StoryBody-last 110
StoryBody-last 121
StoryBody-last 126
StoryBody-last 13
StoryBody-last 130
StoryBody-last 135
StoryBody-last 140
StoryBody-last 146
StoryBody-last 150
StoryBody-last 17
StoryBody-last 30
StoryBody-last 59
StoryBody-last 66
StoryBody-last 76
StoryBody-last 86
StoryBody-last 94
StoryHeader 104
StoryHeader 109
StoryHeader 121
StoryHeader 126
StoryHeader 13
StoryHeader 130
StoryHeader 135
StoryHeader 140
StoryHeader 146
StoryHeader 150
StoryHeader 17
StoryHeader 30
StoryHeader 58
StoryHeader 66
StoryHeader 76
StoryHeader 86
StoryHeader 93
(SBFormatsAPL.fm 6/14/02) 43

44 (SBFormatsAPL.fm) (1)

Images/covera0a-10069569.jpg @ 150 dpi 1
Images/fsa8a22891r.jpg @ 150 dpi 11
Images/fsa8b16069r.jpg @ 150 dpi 25
Images/fsa8a23877r.jpg @ 150 dpi 37
Images/LC-USF34-064602-D.jpg @ 150 dpi 55
Images/4a27519r.jpg @ 150 dpi 63
Images/fsa8a30508r.jpg @ 150 dpi 83
Images/MBDMOTI_EC001_H.jpg @ 400 dpi 91
Images/fsa1a35283r.jpg @ 150 dpi 101
Images/fsa8c18321r.jpg @ 150 dpi 107
Images/fsa8b08975r.jpg @ 150 dpi 115
Images/LC-USF34- 084002-C.jpg @ 150 dpi 119
Images/fsa8a23613r.jpg @ 150 dpi 125
Images/fsa8b03594r.jpg @ 150 dpi 129
Images/fsa8b04999r.jpg @ 150 dpi 133
Images/fsa8d08930r.jpg @ 150 dpi 137
Images/8d24440r.jpg @ 200 dpi 143
Images/fsa8d11291r.jpg @ 150 dpi 149
Images/fsa8d09852r.jpg @ 150 dpi 153
(SBImageNamesLOR.fm 6/14/02) 1

2 (SBImageNamesLOR.fm) (1)

(SBWIPCommentsLOM.fm 6/14/02) 1

• Adaptation/anticipation note from pp214-215. 14

• Add Workspace to the diagram. Perhaps in the middle. 29

• TTWOB P 183 38

• TTWOB p 261 38

• TTWOB p 253 39

• (Rapid Development p 407) 68

• Rework this paragraph...("You can now easily") 111

• Need more examples of a change tasks (and what is not a change task) 117

• Should these be pattern refs or moved into the body. 118

• add citation for Make, ANT, etc. 123

• McConnel Quote is from page 407. 127

• Elaborate on the criteria. 127

• Look at XP email comments. Add info here. 139

• Show a tree with third party code etc. (new Figure) 147

• To Do: Look at descriptions in The Patterns Almanac! 159

	Table of Contents
	Preface
	Why I wrote this book
	Who should read this book
	How to read this book.
	Origins of this Material
	About the Photos

	Contributor’s Preface
	Why I co-wrote this book with Steve

	Acknowledgements
	Chapter 0
	Introduction
	Key Concepts and Terminology
	Codeline and Branching Diagrams
	Further Reading

	Part 1
	Background

	Chapter 1
	Putting a System Together
	Balancing Stability and Progress
	The Role of SCM in Agile Software Development
	SCM in Context
	SCM as a Team Support Discipline
	What Software Configuration Management Is
	The Role of Tools
	The Larger Whole
	This Book’s Approach
	Unresolved Issues
	Further Reading

	Chapter 2
	The Software Environment
	General Principles
	What Software is About
	The Development Workspace
	Architecture
	The Organization
	The Big Picture
	Further Reading

	Chapter 3
	Patterns
	About Patterns and Pattern Languages
	Patterns in Software
	Configuration Management Patterns
	Structure of Patterns in this Book
	The Pattern Language
	Overview of the Language
	Unresolved Issues
	Further Reading

	Part 1
	The Patterns

	Chapter 4
	Mainline
	Simplify your Branching Model
	Unresolved Issues
	Further Reading

	Chapter 5
	Active Development Line
	Define your goals
	Unresolved Issues
	Further Reading

	Chapter 6
	Private Workspace
	Isolate Your Work to Control Change
	Update Your Workspace to Keep Current
	Unresolved Issues.
	Further Reading

	Chapter 7
	Repository
	One Stop Shopping
	Unresolved Issues
	Further Reading

	Chapter 8
	Private System Build
	Think Globally by Building Locally
	Unresolved Issues
	Further Reading

	Chapter 9
	Integration Build
	Do a Centralized Build
	Unresolved Issues
	Further Reading

	Chapter 10
	Third Party Codeline
	Use the tools you already have
	Unresolved Issues
	Further Reading

	Chapter 11
	Task Level Commit
	Coarse Grained Tasks
	Do One Commit per small-grained task
	Unresolved Issues

	Chapter 12
	Codeline Policy
	Define the Rules of the Road
	Unresolved Issues
	Further Reading

	Chapter 13
	Smoke Test
	Verify Basic Functionality
	Unresolved Issues
	Further Reading

	Chapter 14
	Unit Test
	Test The Contract
	Unresolved Issues
	Further Reading

	Chapter 15
	Regression Test
	Test for Changes
	Further Reading

	Chapter 16
	Private Versions
	A Private History

	Chapter 17
	Release Line
	Further Reading

	Chapter 18
	Release-Prep Code Line
	Branch instead of Freeze
	Unresolved Issues

	Chapter 19
	Task Branch
	Handling Long Lived Tasks
	Parallel Lines
	Use Branches for Isolation

	Chapter 20
	Referenced Patterns
	Named Stable Bases
	Daily Build and Smoke Test

	Chapter A
	Bibliography

	Chapter B
	SCM Resources On-line
	The Configuration Management Yellow Pages
	CM Crossroads - Online Community and Resource Center for CM Professionals
	CM Today - Daily Configuration Management News
	UCM Central - Unified Configuration Management
	ACME - Assembling Configuration Management Environments (for Software)
	The Software Engineering Institute’s SCM Publications
	Steve Easterbrook's Configuration Management (CM) Resource Guide
	The Software Configuration Management FAQ
	A classic, compiled and maintained by Dave Eaton, who put together the first such FAQ for the com...
	The Association for Configuration and Data Management
	Software Engineering Resource List for Software Configuration Management
	R.S. Pressman and Associates Software Engineering Resources for SCM
	SEweb Software Configuration Management resources at Flinders University
	Pascal Molli’s “CM Bubbles” SCM resources page
	The Usenet newsgroup comp.software.config-mgmt

	Chapter C
	Tool Support for SCM Patterns
	VSS - Visual Source Safe
	CVS - The Concurrent Version System
	Perforce
	BitKeeper
	AccuRev
	ClearCase - base functionality (non-UCM)
	ClearCase - Unified Change Management (UCM)
	CM Synergy
	StarTeam
	PVCS Dimensions
	PVCS Version Manager
	MKS Integrity (Enterprise edition)
	Further Reading

	Chapter D
	Photo Credits

	Chapter E
	About the Photos
	List of Figures

